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Abstract—Due to the existence of noise and spectral redundan-
cies in hyperspectral images (HSI), the band selection is highly
required and can be achieved through the attention mechanism.
However, existing band selection (BS) methods fail to consider
global interaction between the spectral and spatial information
in a non-linear fashion. In this letter, we propose an end-to-
end unsupervised dual attention reconstruction network for band
selection (DARecNet-BS). The proposed network employs a dual
attention mechanism, i.e., position attention module (PAM) and
channel attention module (CAM), to recalibrate the feature maps
and subsequently uses a 3D reconstruction network to restore
the original HSI. This way, the long range nonlinear contextual
information in spectral and spatial directions is captured and
the informative band subset can be selected. Experiments are
conducted on three well-known hyperspectral datasets, i.e., IP,
UP and SA, to compare existing band selection approaches, and
the proposed DARecNet-BS can effectively select less redundant
bands with comparable or better classification accuracy. The
source code will be made publicly available at https://github.
com/ucalyptus/DARecNet-BS.

Index Terms—Band selection (BS), hyperspectral images (HSI),
channel attention, position attention.

I. INTRODUCTION

HHYPERSPECTRAL images (HSI) contain rich infor-
mation on a wide range of continuous narrow spectral

bands with a high spatial resolution and have been extensively
studied in image processing and computer vision applications
[1]–[3]. Due to a large number of spectrum bands present in
the data, HSI always suffer from “the curse of dimensionality”
and a huge computational cost. To tackle this problem, it is
crucial to select the most informative spectral bands so that
the characteristic of the data is well preserved.

Two types of dimensionality reduction techniques, i.e.,
feature extraction and feature selection, are widely used to
analyze HSI. Feature extraction aims to find a mapping from
the original high dimensional features to a low dimensional
space typically using subspace learning [4], [5] or averaging
based methods [6], while feature selection aims to represent
the original data by selecting the most informative subsets.
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Compared to feature extraction methods, band selection ap-
proaches [7] can better represent the physical information of
the original data and thus can be easily adopted in practice.

The band selection techniques can be further categorised
into supervised and unsupervised methods [8]. Due to the
lack of proper ground truth and robust performance, unsu-
pervised methods have received a lot of attention in the last
few decades. Among various unsupervised techniques, the
searching based, clustering based and ranking based methods
are commonly used for band selection in HSI. In searching
based methods, a combination of objective functions are
arranged and then optimized using for instance, a time con-
suming heuristic search [9]. In clustering based approaches,
the similarities among different bands are found by perform-
ing suitable clustering algorithm such as subspace cluster-
ing (ISSC) [10] and sparse nonnegative matrix factorization,
clustering (SNMF) [11]. The ranking based approaches find
informative spectral bands by assigning weight or rank for
each spectral band based on the estimated significance such as
sparse representation (SpaBS) [12] and geometry-based band
selection (OPBS) [13].

Recently, deep neural networks have received much atten-
tion in vision research due to their hierarchical representation
ability and good generalization ability, which have been suc-
cessfully adopted in the HSI domain [1], [2], [14]–[17]. This
inspired researchers to develop various attention mechanisms
which not only suggest where to focus but also improve the
feature representation quality [18], [19]. The attention block
finds meaningful patterns by dynamically extracting feature
maps to help the classification and meanwhile suppressing
ineffective feature maps to reduce the misclassification proba-
bility. The band or channel attention module is initially intro-
duced in band selection network (BSNet-Conv) [20] to select
majority of spectral bands carrying useful information for
classification.However, BSNet-Conv is weak to capture long
range contextual information in both the spatial and spectral
directions. Moreover, existing band selection (BS) methods
fail to simultaneously consider global interaction between the
spectral and spatial information of different bands in a non-
linear fashion. In view of this, we propose to exploit the dual
attention mechanism, originally introduced in [19] for scene
segmentation, to capture the long range nonlinear contextual
information in both the spectral and spatial directions.

The contributions of this paper are highlighted as follows. 1)
We propose DARecNet-BS, an end-to-end unsupervised dual
attention reconstruction network for the band selection task in
the context of HSI domain. 2) The proposed network, which
combines a position attention module (PAM) and a channel
attention module (CAM), is coupled with a 3D reconstruct
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Fig. 1: Overview of the proposed dual attention band selection reconstruction network DARecNet-BS: (a) hyperspectral image, (b) position attention module
(c) channel attention module, (d) self-attention feature maps, (e) 3D reconstruction network, and (f) restored input.

network to capture long-range contextual information in both
the spatial and spectral directions. 3) We demonstrate that our
network can achieve state-of-the-art classification performance
on several benchmark datasets.

II. PROPOSED DARECNET-BS NETWORK

In this section, we present the DARecNet-BS for hy-
perspectral band selection. DARecNet-BS employs a dual
network containing a position attention module (PAM) and a
channel attention module (CAM), followed by a 3D recon-
struct network to capture long-range contextual information
in both the spectral and spatial directions (see Fig. 1). Before
that, we first introduce some definitions and notations.

A spectral-spatial hyperspectral image which contains two
spatial dimensions, namely the width W and the height H ,
and one spectral dimension B, can be defined as Xorig ∈
RW×H×B . All the pixels are classified into Lc land-cover
classes denoted by Y = (y1, y2, . . . yLc

). The pixel xi,j ∈
Xorig where i = 1, . . .W and j = 1, . . . H and hence
we can define the land-cover pixels as a spectral vector
xi,j = [xi,j,1, . . . xi,j,B ] ∈ RB . In the pre-processing step,
neighboring regions of size S×S are extracted centred at pixel
(i, j) from the original HSI data Xorig. Depending on the
neighboring region and spectral information, xi,j ∈ RB×n×n

can be further categorized into three sets, i.e., the pixel
vector xi,j ∈ RB , the spatial region xi,j ∈ RS×S , or
the spectral-spatial region xi,j ∈ RS×S×B . To increase the
discriminative power of any underlying network, the spectral-
spatial information is jointly used and the extracted spectral-
spatial cubes xi,j are stacked into X .

A. Position Attention Module

Aiming to find a set of informative spectral bands that can
represent the whole band spectrum effectively, the position
attention module (PAM) [19] can be used to recalibrate the
strength of different spatial positions of the input. PAM takes
HSI cubes X ∈ RS×S×B as input and produces an output of
spatial attention map EPAM ∈ RS×S×B :

EPAM = AttModp(X; θp) (1)

where θp represents the trainable parameters involved in the
PAM. The details of PAM are given step by step as follows.

Initially, X is passed through a convolutional layer, pro-
ducing three sets of new features, i.e., Conv2D(X) = Ap =
{Ap

1, A
p
2, A

p
3}, where the dimensions of Ap

1, A
p
2 are reduced

by a reduction factor, say r = 8 and the shapes become
Ap

1, A
p
2 ∈ RS×S×B/r, and Ap

3 ∈ RS×S×B . Then, the obtained
feature maps Ap

1, Ap
2 and Ap

3 are reshaped into RV×B where
V = S × S represents the number of pixels in a single
band. Then, a matrix multiplication is performed between the
reshaped feature maps Ap

1 ∈ RV×B and Ap
2 ∈ RV×B and a

transpose operation is performed on Ap
2 ∈ RB×V to satisfy

the multiplication constraint. To calculate the resultant spatial
attention map Qp ∈ RV×V , the matrix is passed through a
softmax layer as follows:

qpji =
exp (Ap

1,i, A
p
2,j)∑V

i,j=1 exp (A
p
1,i, A

p
2,j)

(2)

where qij evaluates the positional impact between ith and jth

spatial features which leads to greater correlation between their
similar representation. After that a matrix multiplication is
again performed between the transpose of Qp and Ap

3 matrix.
Then, a multiplication operation is performed with a trainable
scalar parameter αp which is initially set to zero and gradually
learnt while training to provide more importance to the spatial
attention [19]. Finally, the element-wise addition operation
is performed with the input X to obtain the final spatial
attention map EPAM ∈ RS×S×B . The attention feature map
generated from the position attention module, i.e., EPAM , can
be therefore formulated as follows:

EPAM,j = αp
V∑
i=1

(qpjiA
p
3,i) +Xj (3)

As can be seen from Eqn. (3), EPAM selectively aggregates
position-wise weighted sum of the learned features across
all the ith and jth locations of input X in a global context
under the guidance of the spatial attention map. The details of
position attention module are shown in Fig. 1 (b).
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B. Channel Attention Module

Unlike PAM, the channel attention module (CAM) [19]
is used to find the strength of different spectral bands by
recalibrating of the input. As shown in Fig. 1 (c), the channel
attention map ECAM ∈ RS×S×B can be directly calculated
from input image X ∈ RS×S×B :

ECAM = AttModc(X; θc) (4)

where θc represents the trainable parameters associated with
CAM. The details of CAM is described step by step as follows.

Initially, the input is stacked into Ac = {Ac
1, A

c
2, A

c
3} where

Ac
1 ∈ RS×S×B , Ac

2 ∈ RS×S×B are reshaped into RV×B and
a matrix multiplication is performed between Ac

1 and transpose
of Ac

2. Then, the result is passed through a softmax layer to
obtain the channel attention map Qc ∈ RB×B :

qcji =
exp (Ac

1,i, A
c
2,j)∑B

i,j=1 exp (A
c
1,i, A

c
2,j)

(5)

where qcji evaluates the impact of ith channel on jth channel.
Finally, we perform a matrix multiplication between Qc and
the transpose of Ac

3 and reshape the result into RS×S×B . The
channel attention map ECAM is obtained as follows:

ECAM,j = αc
B∑
i=1

(qcjiA
c
3,i) +Xj (6)

where αc is a trainable scalar parameter which controls the
importance of the channel attention map across the input
feature map X (it is initially set to 0 and allowed to learn
during training). The above formulation aggregates channel-
wise weighted sum of the learned features across all the ith

and jth channel of input X ∈ RS×S×B in the global context
guided by the channel attention map.

In order to gain more attention to the long-range contextual
information, the generated feature maps from the above two
attention modules, i.e., EPAM and ECAM , are aggregated
using an element-wise sum fusion (⊕) to model the position-
channel attention features (Fig. 1 (d)). The result is called self-
attention feature USAF ∈ RS×S×B which is formulated as

USAF = EPAM ⊕ ECAM (7)

The self-attention feature helps to boost the feature discrimi-
nation ability as compared to the original HSI data. To avoid
the feature discrepancy, we model it without the convolutional
layer before the feature fusion, as done in [19].

C. 3D Reconstruction Network

To show the feature generalization ability, the original
spectral bands are restored from the self-attention feature maps
using an adapted 3D reconstruction network (RecNet) by

X̂ = FRecNet(USAF ; θe) (8)

where θe is trainable parameters in RecNet and X̂ ∈
RS×S×B is the reconstructed output for the given input
X ∈ RS×S×B . RecNet consists of two Conv3D lay-
ers, and one maxpool3D, followed by two DeConv3D
layers. Each convolution block consists of {Conv3D ⇒
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Fig. 2: PSNR and SSIM convergence curves for the reconstructed images in
three benchmark datasets.

BatchNorm3D ⇒ PReLU}. Each deconvolution block
consists of {DeConv3D ⇒ BatchNorm3D ⇒ PReLU}
and finally a Conv3D layer with BatchNorm3D is applied
into RecNet to remove feature discrepancy. The shape of the
kernel 1×3×3 with a stride of size 1 is used throughout
the convolutional/deconvolutional block in the network. The
reconstruction performance of the network is measure by

L1(θb, θe) =
1

2Ntr

∑Ntr

i=1 ||xi − x̂i||1
(9)

where x ∈ X , x̂ ∈ X̂ , and Ntr is the number of training ex-
amples. The training is completed when the model converges
or reaches the maximum iteration. The number of trainable
parameters of the whole DARecNet-BS is about 2, 00, 976
on Indian Pines dataset.

To select the most informative spectral bands, the entropy
is calculated from each band (bi ∈ B) of the reconstructed
output X̂ ∈ RS×S×B using Eqn. (10):

H(bi) = −
∑
h

p(h) log(p(h)), s.t.
∑
h

p(h) = 1 (10)

where h is the gray level of histogram bins in a band consisting
of S × S pixels, and p(h) = n(h)

S×S is the probability that
h occurs. Then, the entropy values are stored and sorted in
descending order to select the top-k bands. According to the
Shannon’s entropy theory, the larger the entropy is, the more
information the bands will contain [9], [21].

III. EXPERIMENTAL RESULTS

Due to the non-availability of proper ground truth, the effi-
ciency of different band selection methods is indirectly evalu-
ated in terms of overall accuracy (OA), average accuracy (AA),
statistical metric Kappa (κ), and some statistical analysis
among the selected bands. The proposed DARecNet-BS is
compared with well-known band selection methods such as
SpaBS [12], PCA [5], SNMF [22], and BSNet-Conv [20].
To obtain robust classification performance, we use spectral-
spatial residual network (SSRN) [16] in an end-to-end train-
ing fashion. The experiments are conducted using a 64-bit
Ubuntu 18.04LTS operating system with NVIDIA Titan V
12-GB graphics processing unit. The whole framework is
implemented in PyTorch with CUDA 10.1 enabled. We train
DARecNet-BS by extracting 3D patches of size 7×7×B,
where band Bs from IP, UP and SA datasets are set to 200, 103
and 204, respectively. Training is performed 5 times each using
200 epochs with a batch of size 32 on all the HSI datasets.
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Fig. 3: OA on varying training samples (a) and selected bands (b) for IP dataset. The sum of entropy (c) and MSD (d) on selected bands for IP dataset.

TABLE I: Classification performance of different methods using selected 25
bands for Indian Pines dataset with 5% training size.

No SpaBS [12] PCA [5] SNMF [22] BSNet-Conv [20] DARecNet-BS

1 58.28 ± 42.02 32.50 ± 45.96 65.83 ± 46.56 88.47 ± 5.14 56.67 ± 40.67
2 85.57 ± 4.48 90.22 ± 4.60 91.29 ± 2.37 92.33 ± 1.76 93.05 ± 5.33
3 92.36 ± 2.47 91.44 ± 7.81 91.03 ± 1.37 95.48 ± 2.58 95.56 ± 2.85
4 85.04 ± 5.88 70.18 ± 2.40 87.51 ± 6.86 84.64 ± 7.29 88.52 ± 2.38
5 98.78 ± 1.02 89.00 ± 6.68 97.14 ± 0.95 77.87 ± 30.74 96.47 ± 4.98
6 98.39 ± 0.29 96.60 ± 0.75 99.14 ± 0.60 98.45 ± 1.37 99.26 ± 1.92
7 90.00 ± 14.14 61.90 ± 44.16 90.31 ± 7.58 96.15± 5.43 82.99 ± 8.88
8 97.91 ± 2.78 93.12 ± 4.91 95.30 ± 3.31 97.13 ± 2.92 97.65 ± 3.99
9 77.85 ± 19.01 89.85 ± 14.34 61.40 ± 43.89 94.73 ± 7.44 96.73 ± 5.40

10 90.30 ± 3.06 88.29± 3.83 88.56 ± 5.72 87.59± 3.65 85.66 ± 9.29
11 86.41 ± 2.10 89.64 ± 5.17 88.52 ± 5.99 91.30 ± 6.80 93.67 ± 2.02
12 84.57 ± 2.74 87.17 ± 9.25 95.72 ± 1.53 94.10± 2.31 81.98 ± 1.64
13 95.01 ± 5.63 99.29 ± 0.50 99.29 ± 1.00 99.46 ± 0.75 99.79 ± 0.50
14 95.72 ± 0.47 94.81 ± 1.50 94.56 ± 1.58 94.41 ± 2.39 95.81 ± 1.27
15 92.45 ± 1.52 89.07 ± 3.04 90.70 ± 5.40 94.05 ± 6.39 88.49 ± 3.94
16 96.82 ± 0.93 93.38 ± 3.34 94.95 ± 2.19 92.68 ± 4.80 97.20 ± 1.49

OA(%) 90.43 ± 0.81 90.18 ± 2.03 90.91 ± 2.99 90.28 ± 3.61 92.04 ± 2.21
AA(%) 89.09 ± 5.16 84.78 ± 5.91 89.45 ± 7.12 92.48 ± 2.49 89.42 ± 3.03
Kappa 0.890 ± 0.00 0.887 ± 0.02 0.907 ± 0.03 0.889 ± 4.04 0.909 ± 0.02

TABLE II: Classification performance of different methods using 15 and 20
bands for UP and SA datasets with 5% training size.

Data Measure SpaBS [12] PCA [5] SNMF [22] BSNet-Conv [20] DARecNet-BS

OA(%) 97.84 ± 0.78 98.16 ± 0.47 98.46 ± 0.90 97.48 ± 1.21 99.29 ± 0.32
UP AA(%) 98.07 ± 0.77 98.12 ± 0.76 97.93 ± 0.91 98.75 ± 0.64 99.06 ± 0.25

Kappa 0.971 ± 0.01 0.975 ± 0.01 0.979 ± 0.01 0.972 ± 0.01 0.990 ± 0.00
OA(%) 96.90 ± 0.70 90.50 ± 1.07 97.16 ± 1.31 97.48 ± 1.21 97.99 ± 1.96

SA AA(%) 98.54 ± 0.30 93.59 ± 1.19 98.62 ± 0.48 98.65 ± 0.64 98.74 ± 0.46
Kappa 0.965 ± 0.00 0.894 ± 0.01 0.968 ± 0.01 0.972 ± 0.01 0.981 ± 0.52

The learning rate is set by cosine annealing scheduler and the
diffGrad [23] optimization is used for training.

A. Hyperspectral Datasets
We use three well-known HSI datasets (i.e., Indian Pines,

University of Pavia, and Salinas Scene)1 to demonstrate the
classification performance of the proposed DARecNet-BS.

The images in Indian Pines (IP) dataset contain 224 spectral
bands in the wavelength range of 400 to 2500 nm with spatial
dimension of 145 × 145 pixels. The water absorption based
24 spectral bands are not considered. The final IP dataset is
provided with the labelled classes for 16 types of vegetation.

The images in University of Pavia (UP) dataset contain 103
spectral bands in the wavelength range of 430 to 860 nm with
spatial dimension of 610×340 pixels. This dataset is provided
with the labelled classes for 9 types of urban land-covers.

The images in Salinas (SA) scene dataset contain 224
spectral bands in the wavelength range of 360 to 2500 nm with
spatial dimension of 512 × 217 pixels. The water absorption
based 20 spectral bands are not considered. The final SA
dataset is provided with the labelled classes for 16 types of
fruits and vegetables.

B. Results on HSI Datasets
To analyse the convergence of our proposed band selection

method, we perform band selection from the reconstructed

1http://dase.grss-ieee.org/
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Fig. 4: Selected bands for IP dataset with (a)-(e) high entropy and (f)-(j) low
entropy, respectively.
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Fig. 5: Top 15 selected bands using different band selection methods (top)
and associated entropy value of each band (bottom).

images after training using 100 epochs. The reconstruction
quality always depends upon the computed Structural Simi-
larity Index (SSIM) and Peak Signal to Noise Ratio (PSNR).
Fig. 2 shows SNR and SSIM convergence curves. As can be
seen, the PSNR value of reconstructed images stabilises to
around 60dB after 50 epochs for Indian Pines and similarly
the SSIM value stays close to one after around 45 epochs. The
large PSNR or the large SSIM value measures the quantitative
quality of reconstructed image generated from the network.

Table I shows the performance measure indices, i.e., OA,
AA, and Kappa along with class-wise accuracies computed
under subset of 25 bands with limited training samples of 5%
for IP dataset. Table II shows the results of OA, AA, and
Kappa for UP and SA datasets using 5% training samples
with 15 and 20 selected bands. One can see that the proposed
DARecNet-BS method provides comparable or better clas-
sification performance over all datasets with a small standard
deviation. Moreover, Fig. 3 (a) and (b) show the classification
performance (OA) with respect to varying training samples
and selected bands, respectively, for IP dataset. We see that
DARecNet-BS achieves superior performance in terms of
OA using most of the training sizes and number of selected
bands. Table III shows the performance gain (%) of OA, AA
and Kappa for DARecNet-BS over models of PAM, CAM
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TABLE III: Performance gain (%) of OA, AA and Kappa for DARecNet-BS over models of PAM, CAM and no attention.

Matrices IP UP SA
PAM CAM No Attention PAM CAM No Attention PAM CAM No Attention

OA 0.38 0.96 1.89 0.51 0.47 0.47 1.87 0.45 7.44
AA -1.08 -1.03 -0.07 0.48 0.61 0.56 0.40 -0.14 2.51

Kappa 0.000 0.000 -0.004 0.007 0.006 0.006 0.025 0.009 0.086

and no attention mechanism. One can see that DARecNet-BS
generally performs better than the models with attention PAM,
CAM and without any attention on all three datasets. It is also
noted that the model with attention PAM or CAM can produce
pretty good AAs only on the IP dataset.

To analyse the redundancy among the selected top-k bands,
we calculate an information theory based criteria, i.e, mean
spectral divergence (MSD) [24] which is expressed as

MSD =
2

k(k − 1)

k∑
i=1

k∑
j=1

DKLS(bi||bj) (11)

where bi, bj ⊆ B, DKLS(bi||bj) is symmetric KL divergence
given as DKLS(bi||bj) = DKL(bi||bj) + DKL(bj ||bi), and
DKL(bi||bj) is calculated from gray-level histogram bins. It
can be inferred from Eqn. (11) that the larger the value of
MSD is, the less redundant information the selected bands
contain. Fig. 3 (c) and (d) represent the sum of entropy and
MSD on the selected bands for IP dataset. It is also observed
that SNMF [22] provides better MSD among the BS methods
but unable to achieve good classification performance. The
selected top 5 and bottom 5 spectral bands for IP dataset are
shown in Fig. 4. It is obvious that the top 5 bands are more
distinct due to large entropy than the bottom 5. In addition,
the top 15 selected bands using different BS methods and their
entropy values are shown in Fig. 5. More detailed results can
be found in the supplementary material.

IV. CONCLUSION

The letter introduces DARecNet-BS, an unsupervised dual
attention reconstruction network for hyperspectral band selec-
tion. DARecNet-BS combines the position and spectral atten-
tion mechanisms to capture long range contextual information
in both spectral and spatial directions. Our network improves
the feature representation ability for informative band selection
with less computational overhead. Experiments on three well-
known datasets demonstrate the superior performance using
small training sets with less number of spectral bands.
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