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Abstract

In this thesis, we tackle two problems in the field of deepfake detection. First,

we present a novel approach for the detection of deepfake videos using a pair of

vision transformers pre-trained by a self-supervised masked autoencoding setup. Our

method consists of two distinct components, one of which focuses on learning spatial

information from individual RGB frames of the video, while the other learns temporal

consistency information from optical flow fields generated from consecutive frames.

Unlike most approaches where pre-training is performed on a generic large corpus of

images, we show that by pre-training on smaller face-related datasets, strong results

can be obtained. We perform various experiments to evaluate the performance of

our method on commonly used datasets. Our experiments show that our method

sets a new state-of-the-art in various setups including cross-dataset generalization.

Subsequently, we introduce FairAlign, a new method to reduce bias and improve

fairness in deepfake detection by aligning conditional embedding distributions in a

high-dimensional kernel space. Our approach reduces information related to sensitive

attributes in the embedding space that could potentially bias the detection process,

thus promoting fairness. FairAlign is a versatile plug-and-play loss term compatible

with various deepfake detection networks and is capable of enhancing fairness without

compromising detection performance. In addition to applying FairAlign for reducing
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gender bias, we implement a systematic pipeline for the annotation of skin tones and

promotion of fairness in deepfake detection related to this sensitive attribute. Finally,

we perform the first comprehensive study toward quantifying and understanding the

trade-off between fairness and accuracy in the context of deepfake detection. We

use public deepfake datasets to evaluate our method. Through various experiments,

we observe that FairAlign outperforms other bias-mitigating methods across various

deepfake detection backbones for both gender and skin tone, setting a new state-

of-the-art. Moreover, our fairness-accuracy trade-off analysis demonstrates that our

approach demonstrates the best overall performance when considering effectiveness in

both deepfake detection and reducing bias.
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Chapter 1

Introduction

1.1 Background

Deepfakes are synthetic media, such as images, videos, or audio files, created or

manipulated with deep learning algorithms. Rapid advancements in generative models

have been a critical driver in the evolution of deepfake technology [6]. Historically,

creating convincing deepfakes required extensive technical expertise and resources;

however, the widespread and public availability of pre-trained generative vision models

have significantly lowered these barriers [7, 8]. While deepfake technologies offer diverse

applications in fields like the entertainment industry [9, 10], their increased accessibility

also brings significant concerns regarding potential misuse. Such technologies could

create false evidence, impersonate individuals for fraudulent purposes, or manipulate

media to spread misinformation [11]. This is particularly alarming given the current

global landscape where digital media play a central role in shaping public opinion [12].

Facial forgery detection, also known as deepfake detection, is a rapidly growing

field with important real-world applications [13]. With the recent explosion in the

success of sophisticated deep generative models [14, 15, 16], it has become increasingly
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Figure 1.1: A facial image along with the four manipulated versions from the Face-
Forensics++ (FF++) dataset.

easy to generate highly realistic fake images and videos (see Figure 1.1 for an example

of a real image along with four manipulated versions). The advancements in artificial

intelligence have made it possible to create deepfakes that are nearly indistinguishable

from genuine content, making the detection process even more challenging. This has

led to a growing concern about the potential for malicious actors to use these tools for

nefarious purposes, such as spreading misinformation, manipulating public opinion, or

even causing social unrest. Given the potential risks associated with deepfakes, the

importance of developing effective detection methods cannot be overstated [17, 18, 19].

The ease of creating deepfakes necessitates the development of sophisticated

methods for the detection of content produced by generative models. Various deepfake

detectors can successfully identify forged content in real-world scenarios [20, 21, 22].

To improve detection performance, the biometrics research community has employed

machine learning algorithms to discern subtle inconsistencies and artifacts common in

synthetic content [23, 24, 25]. Despite their wide application in the community, several

studies [26, 27, 28, 9, 29, 30, 3] have shown that these systems are biased toward

specific groups with regards to sensitive attributes like gender, racial background, age,

and others.
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1.2 Problem and Motivation

The field of deepfake detection has seen considerable progress in recent years with a

number of sophisticated techniques being proposed in the area [31, 32]. However, in the

context of detecting manipulated content in videos, many existing methods primarily

focus on spatial features extracted from individual frames [25]. This approach can

lead to the overlooking of temporal dynamics that evolve throughout video sequences.

This strategy can result in limitations, as temporal artifacts such as flickering and

motion discontinuities, are common indicators of deepfake manipulation. Furthermore,

sophisticated deepfakes may exhibit subtle spatial inconsistencies that manifest over

time, necessitating an integrated analysis of both spatial and temporal information.

Moreover, we hypothesize that capturing subtle spatiotemporal inconsistencies that

are often caused by different deepfake generation methods, could significantly enhance

performance by learning representations that generalize to unseen forgery methods,

which is often a challenging problem in this area.

Concurrently, the field faces significant open problems concerning fairness in

deepfake detection. Although a number of bias-mitigating strategies have been

proposed for deepfake detection [3, 28], the embeddings generated by these detectors

continue to retain information related to sensitive attributes, which could cause biases

in detection of deepfake content. Figure 1.2 shows representations from sample images

produced by the encoder of a deepfake detector [2]. We observe that despite the

application of a bias-mitigating approach [3], the representations still contain gender-

specific information depicted as male/female clusters. As a result, we suggest that

there is substantial room for improvement at the core of this problem. Despite efforts

to develop less biased deepfake detectors that work fairly across different populations,
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Figure 1.2: Representations for sample images from the CelebDF dataset [1] obtained
from the EfficientNet-B4 detector encoder [2] with DAG-FDD [3] bias-
mitigation. The male/female clusters indicate the existence of gender-
related information in the embeddings.

gender has been the main area of focus. While a few works have focused on ‘ethnicity’

as a second factor, we argue that ‘skin tone’ [33] is a more critical and, at the same

time, more practical factor to focus on. Moreover, given the prominence of skin

tone in facial images, it is more likely for skin tones to be the reason for biased

representations being learned by deep learning models as opposed to ethnicity. Lastly,

there exists a phenomenon referred to as the ‘fairness-accuracy trade-off’, which

indicates that enhanced fairness may come at the cost of reduced accuracy [34, 33].

While some studies suggest variability in the existence of this trade-off [35, 36, 37], the

intertwined relationship of fairness and accuracy has been widely confirmed in prior

works [38, 39, 40]. However, to our knowledge, this trade-off has not been studied in
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prior works in the context of deepfake detectors.

Addressing these challenges is imperative for the advancement of the field of

deepfake detection. Enhancing detection methods to incorporate both spatial and

temporal information can lead to more robust and effective identification of deepfakes.

Simultaneously, ensuring that these methods are fair and do not perpetuate biases

is crucial for maintaining the integrity and societal acceptance of these technologies.

Therefore, a balanced approach that addresses both the technical and ethical dimen-

sions is essential for the future development of reliable and equitable deepfake detection

systems.

1.3 Solutions Overview

In response to the technical challenges identified above, we propose two novel so-

lutions. To address the first problem of accurate deepfake detection, we propose a

dual-component detection system. One component learns spatial information from

individual RGB frames of the videos, while the second component leverages optical flow

fields to learn temporal consistency across the video. Both components utilize vision

transformers [41], which we train in two steps. First, inspired by [42] we pre-train

the models in an autoencoding setup using a self-supervised reconstruction scheme.

Second, we discard the reconstruction decoder and add a new classification head to

each encoder, where they are fine-tuned for deepfake detection, followed by score-level

fusion of the results. We pre-train the spatial learning and temporal consistency

learning encoders with CelebFaces-Attributes (Celeb-A) [43] and YouTube Faces [44]

datasets respectively. For downstream deepfake detection, we evaluate our approach

on the FF++ (High Quality) and FF++ (Low Quality) datasets [45] which employ
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compression factors of 23% and 40%, respectively, in addition to the CelebDF dataset

[1]. Additionally, we synthesize a more challenging variation of the FF++ dataset,

which we call FF++ (Very Low Quality) by compressing the data with a rate of

65%. This dataset is then used to further evaluate our approach against existing

techniques in the presence of extreme compression artifacts. Experimental results

demonstrate that our method achieves state-of-the-art performance on FF++ (LQ and

HQ) datasets and highlight the efficacy of our approach in detecting deepfakes across

diverse compression levels. Ablation studies demonstrate the importance of different

components of our method. Lastly, state-of-the-art results when fine-tuning our model

on FF++ and testing it on CelebDF (cross-dataset evaluation) demonstrates the

strong generalization of our method.

As the second aspect of our solution, we propose a novel loss term called FairAlign,

for enhancing fairness via the alignment of conditional distributions of the embeddings

in higher-dimensional kernel space. Our method aims to reduce the gap in detection

performance across different sensitive attributes such as gender, thus mitigating the risk

of biased outcomes. By leveraging the kernel space, our method integrates the cross-

covariance and covariance operators of the conditional distributions of the embeddings

given sensitive attributes obtained from deepfake detectors into the training process.

Our method is a plug-and-play technique that can be integrated with other existing

loss functions used in deepfake detection. Using our method, we perform multiple bias-

mitigation experiments in deepfake detection on two public datasets (CelebDF [1] and

FF++ [46]), wherein we demonstrate the effectiveness of our method in improving the

fairness of several state-of-the-art deepfake detectors while retaining strong detection

performance. Additionally, we propose a simple yet effective pipeline for detecting skin
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tones and using them to mitigate bias for this factor. Our method uses ArcFace [47]

to detect and extract the face. Subsequently, we select the facial skin regions using

a pre-trained U-Net model [48], based on which the average skin color is measured.

Finally, we use the shortest Euclidean distance between the skin tone with respect to

Monk Skin Tone (MST) [49] scale to determine the final skin tone. We then apply

this pipeline to deepfake detection datasets for the first time, following which we

perform skin tone bias mitigation experiments. We find that our method, FairAlign, is

effective at reducing skin tone biases in deepfake detection datasets. Lastly, to analyze

deepfake detection with a balanced view of both fairness and accuracy, we utilize

two metrics, Fairea [5] and Harmonic Mean (HM) [50, 51], and combine fairness and

accuracy into unified indices. This is the first time the fairness-accuracy trade-off is

being studied in the context of deepfake detection. Our analysis shows that while some

existing fairness-promoting techniques do indeed reduce bias to a good degree, this

improvement comes at the cost of accuracy, hence not ideal for practical applications.

The analysis further demonstrates that our proposed FairAlign maintains the highest

performance in terms of both fairness and accuracy as per the unified metrics.

1.4 Contributions

Our contributions in this thesis can be summarized as follows:

• We propose a new approach for effective facial forgery detection. Our method

uses a vision autoencoding transformer and is pre-trained in a self-supervised

masked reconstruction setup. Our solution consists of two main components

which learn spatial (RGB) and temporal consistency information (optical flow

fields) separately.
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• We leverage relatively small datasets, namely Celeb-A and YouTube Faces,

for pretraining our transformers, and achieve state-of-the-art results in the

downstream task of deepfake detection on FF++ (LQ, HQ, and VLQ) datasets

and competitive results on CelebDF.

• For promoting fairness in deepfake detection we propose a new loss term,

FairAlign, that operates in the kernel space, to reduce the distance between

distributions of the representations learned by deepfake detectors given different

sensitive attribute groups. Our method demonstrates effectiveness in improv-

ing the fairness of state-of-the-art deepfake detectors while maintaining strong

detection performance on two large-scale datasets, FF++ [46] and CelebDF [1].

• We analyze and improve fairness based on skin tones for deepfake detection tasks.

We extract skin tones from existing deepfake datasets using the guidelines given

by the MST scale[49], and apply our proposed FairAlign method for enhanced

fairness. Our experiments demonstrate that FairAlign improves skin tone fairness

across all state-of-the-art deepfake detectors. To our knowledge, this is the first

attempt at reducing bias against different skin tones in the context of deepfake

detection. Additionally, we enhance fairness based on the intersection of gender

and skin tone in the context of deepfake detection for the first time.

• To objectively quantify the fairness-accuracy trade-off for bias-mitigating meth-

ods, we analyze two unified metrics for the first time in the realm of fair deepfake

detection. Results show that our method is highly favorable as a bias-mitigating

method that strikes a healthy balance between fairness and accuracy.
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1.5 Publications

The following papers have resulted from this research :

• [23]: Sayantan Das, Mojtaba Kolahdouzi, Levent Özparlak, Will Hickie, Ali

Etemad, “Unmasking Deepfakes: Masked Autoencoding Spatiotemporal Trans-

formers for Enhanced Video Forgery Detection”, International Joint Conference

on Biometrics (IJCB), 2023.

• Sayantan Das, Mojtaba Kolahdouzi, Ali Etemad, “FairAlign: Embedding

Distribution Alignment for Bias Reduction in Deepfake Detection”, Under Review,

2024.

1.6 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 offers a comprehensive

review of deepfake detection methods including classical solutions, Convolutional

Neural Network (CNN), and attention mechanisms. Next we explore the role of

frequency analysis, temporal approaches, and self-supervised learning in deepfake

detection. This is followed by a discussion on multimodal solutions. Next, we review

prior work on fairness in deepfake detection, followed by studies on the fairness-

accuracy trade-off. Chapter 3 presents our novel method for spatiotemporal deepfake

detection using masked reconstruction followed by the experiment setup and results

of our approach. Chapter 4 presents our newly proposed loss term for enhancing

fairness in deepfake detection, as well as our simple and effective pipeline for skin

tone bias mitigation. We then present the experiments and results in comparison to

other bias-mitigation techniques for gender, skin tone, and intersection of the two,
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across various deepfake detection backbones. We wrap this chapter up by a through

analysis on fairness-accuracy trade-off. Finally Chapter 5 concludes the thesis by

summarizing our work, followed by a discussion on limitations and potential future

research directions.



11

Chapter 2

Related Work

In this section, we review prior works on deepfake detection using various approaches.

We follow this with a review of literature on fairness in deepfake detection. Finally,

prior works on skin tone fairness and fairness-accuracy trade-off are reviewed.

2.1 Deepfake Detection

Deepfake detection has traditionally been addressed as a binary classification task

[32], where the objective is to discern between authentic and manipulated media. The

application of deep learning models, particularly CNN, has been central to achieving

this objective [52, 53, 54]. Authors of FF++ dataset [45] used Xception network,

which was one of the best-performing architectures at the time, to perform deepfake

detection via transfer learning [52].

Researchers proposed a method in [53] that utilizes residual-based descriptors in

the form of a constrained CNN for image forgery detection. This approach aims to

capture and analyze the residual noise present in manipulated images, which can

be a strong indicator of forgery. In contrast, another method introduced a deep

learning approach that focuses on the mesoscopic properties of images [54]. In this
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context, ‘mesoscopic’ refers to properties or features that fall between the small scale

(microscopic) and the large scale (macroscopic). By concentrating on mesoscopic

features, the model can capture subtle artifacts and inconsistencies in manipulated

images, potentially making it more effective in detecting forgeries.

2.1.1 Attention Mechanisms

Attention mechanisms [55], combined with CNN [56, 57], have been adopted to

enhance interpretability and facilitate the identification of manipulated regions in

images. These attention-based models generate attention maps highlighting regions

contributing significantly to the detection decision. For instance, [56] used attention

maps generated by deep semantic features to outline crucial regions that contributed

towards the classification result. The low-level textural feature and high-level semantic

features are then aggregated and guided by these attention maps, which helps to

capture more subtle artifacts in the image. The work in [57] proposed a new attention

mechanism to calculate self-information from the input feature map and output a

discriminative attention map that highlights regions contributing significantly to the

detection decision.

2.1.2 Frequency Analysis

Various studies have utilized frequency analysis to detect inconsistencies that arise

during deepfake creation [58, 59]. In [58], the researchers employed the phase spectrum

for forged face image detection, showing that CNN can identify additional implicit

phase spectrum features that are advantageous in detecting face forgeries. Concurrently,

the study in [59] developed a multi-scale patch similarity module to specifically model
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second-order relationships between distinct local regions, forming a similarity pattern

through pairwise cosine measurements. These patterns distinguish real from forged

regions by recognizing differences such as irregular textures and high-frequency noise.

2.1.3 Temporal Approaches

According to [32], most detection techniques applied to images are not ideally suited

for use in videos, as these methods tend to overlook temporal dynamics. In [60], a

Recurrent Convolutional Network leveraged spatiotemporal features [61] of videos to

identify deepfakes. Similarly, the work in [62] identified inconsistencies within and

between frames of deepfake videos. They developed a model combining CNN and Long

Short-Term Memory (LSTM) to detect these discrepancies. In their approach, the CNN

is tasked with extracting features from individual frames, while the LSTM processes

these features to create a descriptor for temporal sequence analysis. A recent work [63]

introduces the HCiT framework, blending CNN and Vision Transformers (ViT) models

to enhance deepfake detection through detailed spatiotemporal inconsistency analysis,

achieving superior performance and generalization across diverse video content. This

focus on spatiotemporal analysis shows that our research is in line with current trends

in deepfake detection methods.

2.1.4 Self Supervised Learning

Self-supervised learning (SSL) has been explored to address the issue of limited

labeled data for deepfake detection [64, 65, 66, 67, 68]. For instance, self-supervised

learning was employed in [64] with an auxiliary task specifically designed for deepfake

detection, using a synthesizer and adversarial training framework to dynamically



2.1. DEEPFAKE DETECTION 14

generate forgeries. This approach enriches diversity and strengthens sensitivity to

produce strong results. In the method proposed in [65], mouth motion representations

were learned by encouraging close-paired video and audio representations while keeping

unpaired ones diverse. The study in [66] proposed a decoupling strategy to separate

facial authenticity and compression relevance, implemented through a joint self-

supervised learning approach using compression ratios as self-supervised signals.

Another study utilized a multi-modal backbone trained in a self-supervised manner and

adapted it to the video deepfake domain [67]. These self-supervised models leverage

unlabeled data to learn useful representations for detection tasks. Contrastive learning

is another common pre-text learning approach often considered for deepfake detection

[69, 68]. In the study by [69], two different transformed versions of a face image

were generated using two distinct transformations. The agreement between these

transformed images is maximized after they are passed through an encoder network

and a projection head network, effectively training the model without supervision

signals. On the other hand, another study employed supervised contrastive learning

to learn common features between instances of the same class, while distinguishing

between samples from different classes [68].

2.1.5 Multimodal Approaches

In recent studies, researchers have sought to combine multiple modalities, such as

visual, audio, and temporal information, to improve detection performance in deepfake

detection tasks [58, 70, 71]. These multi-modal approaches provide a comprehensive

view of the media, making them more robust against limitations specific to individual

modalities [72]. While frequency-based modalities have been employed in multi-modal
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deepfake detection solutions [58], we believe that optical flow has the potential to

serve as an effective alternative source of information.

Prior works such as [73, 74, 75, 76] have used optical flow features followed by a

classifier for deepfake detection. In contrast, for the first time, our method leverages

optical flow information alongside RGB features in a masked autoencoding setup

to improve cross-dataset generalizability and robustness. To our knowledge, prior

deepfake detection methods involving ViT [77, 78, 79, 80, 81] have not used optical

flow information to capture the temporal inconsistencies.

2.2 Fairness in Deepfake Detection

Prior works have demonstrated the existence of bias in deepfake detection tasks with

respect to gender, age, and ethnicity [33, 26, 82, 27], while a few works have proposed

solutions to mitigate this bias [28, 3]. The work in [26] evaluates bias in existing

deepfake datasets and detection models for the first time in the literature; however, it

doesn’t take into account the intersectional bias. The evaluation of bias for a popular

detection model (MesoInception-4) on FF++ dataset is done in [82]. This work is

limited in terms of the number of detection methods evaluated. A more comprehensive

study is proposed in [27], which evaluates fairness over three deepfake detection models.

One recent work [28] has attempted to mitigate the aforementioned biases through

data-centric approaches, i.e., making the datasets like FF++ balanced with regards

to different sensitive attributes like gender. The process of gender-balancing via data

annotation is time-consuming and also showed limited improvement in fairness. The

work in [3] applies conditional-value-at-risk loss to mitigate bias with regard to both

gender and ethnicity in the context of deepfake detection. To our knowledge, this
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paper is the first and only one to directly provide a solution for bias in deepfake

detection.

2.2.1 Skin Tone Fairness

While ethnicity has been considered for promoting fairness [3, 26, 27] in several

deepfake detection literature, skin tone as a factor in reducing bias is more commonly

addressed in areas like skin lesion classification [83, 84]. To our knowledge, [33] is the

only prior work to study skin tone in the context of deepfake detection. In their study,

researchers evaluate biases in deepfake detection by analyzing top models from the

DeepFake Detection Challenge [85] on the Casual Conversations dataset, which is rich

in diversity across age, gender, and skin tone. Their analysis confirms the importance

of skin tone as a crucial sensitive attribute for bias mitigation in deepfake detection.

2.2.2 Fairness-Accuracy Trade-off

While fairness-accuracy trade-off is a well-known phenomenon [34, 37, 35], only a

handful of works have focused on introducing a quantitative measure to assess the

trade-off between fairness and accuracy [37, 34, 86], although none are positioned in

the context of deepfake detection. One such work defines the Fairness-Area-Under-

the-Curve (FAUC) to empirically define the fairness-accuracy Pareto frontier [34].

FAUC provides a model-agnostic metric to measure the Pareto frontier. However, as

mentioned in their work, FAUC is ineffective when intersectional fairness is involved

or in cases where fairness and accuracy typically do not have an inversely proportional

relationship. Another work [86] approaches this trade-off through the lens of multi-task

learning by proposing two metrics: Average Relative Fairness Gap and Average Relative
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Error. These metrics compare the Fairness-Performance Rate Gap and error rates of

multi-task models to those of single-task models with the same architecture, providing

a nuanced assessment of the balance between fairness and accuracy in multi-task

learning. With a different perspective, [37] approaches the trade-off between fairness

and accuracy by quantifying separability with Chernoff information, challenging the

use of biased datasets for performance measures, and advocating for ideal, unbiased

datasets. Our work utilizes Fairea [5] and HM [50], which were previously not explored

in the context of deepfake detection. Fairea quantifies the trade-off by computing

the area within an enclosed region formed by the baseline fairness values and the

coordinates of any bias-mitigation method in a two-dimensional fairness-accuracy

space. HM computes the trade-off using a straightforward formula that balances

accuracy and fairness, ensuring neither is overlooked in the evaluation process.
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Chapter 3

Masked Autoencoding for Deepfake Detection

3.1 Proposed Method

3.1.1 Overview

Our proposed approach titled Masked Autoencoding Spatiotemporal Deepfake Trans-

former (MASDT) consists of two components: spatial learning and temporal consis-

tency learning. The spatial learning component has the objective of learning robust

spatial features from the RGB images, while temporal consistency learning aims to

extract temporal features from optical flow fields derived from the input images. We

fuse the classification outputs derived from the spatial and temporal consistency

learning components. Both these components follow a self-supervised autoencoding

approach in a two-step process.

The first step involves a self-supervised pre-training strategy which involves both

of the MASDT components in a data reconstruction task. We discuss this strategy in

section 3.1.2. The second step is the downstream task of deepfake detection, wherein

we re-purpose components trained in the previous step to perform the classification of

deepfake data through a model fine-tuning process, followed by fusion of information
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Figure 3.1: An overview of our method (MASDT), which includes the masked facial
reconstruction and deepfake detection steps.

from both components (spatial learning and temporal consistency learning). This is

discussed in detail in Section 3.1.3. Before we discuss each of the two steps, we discuss

the optical flow field generation strategy in Section 3.1.1. A general scheme of the

MASDT strategy is presented in Figure 3.1.

Optical flow field estimation

We utilize a CNN model named PWC-Net for generating optical flow fields [87]. Let

the model for estimating optical flow be Fθ, and two consecutive frames be ft and

ft+1. Accordingly, the estimated optical flow Φt can be denoted by:

Φt = Fθ(ft, ft+1), (3.1)
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where Φt is a 3-channel optical flow matrix of size H ×W × 3 representing the flow

field between the consecutive frames.

3.1.2 Masked Facial Reconstruction

The first step of our approach utilizes a masked self-supervised auto-encoder which

learns to reconstruct original facial images, given partial observations [42]. This

auto-encoder reconstruction pipeline consists of two blocks: a reconstruction encoder,

which captures a latent representation from the visible portions of each image, and

a reconstruction decoder that aims to reconstruct the masked sections of the image

using this latent representation. In this procedure, the encoder is trained to extract

robust spatial features from masked facial images, eliminating noise and redundancy

while transforming the reconstruction task into a challenging process that requires

generalizing features to represent a small subset of available data [88]. Consequently,

by masking portions of the facial image using random spatial pixels or patches, we

can avoid a potential location bias toward image reconstruction, which can be critical

for the detection of deepfake images.

The goal of the decoder is to use the features obtained from the latent space by

the encoder to reconstruct the masked information from the original facial image.

We train this reconstruction encoder-decoder pair using a simple mean squared error

(MSE) reconstruction loss Lr:

Lr =
1

N

N∑
i=1

(yi − ŷi)
2, (3.2)

where N represents the number of sampled patches, and ŷi and yi are the ith output

and expected ith output, respectively.
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We perform the above masked reconstruction task for both the components inde-

pendently where we employ the encoder-decoder pairs for reconstructing RGB images

y and optical flow fields Φ for spatial learning and temporal consistency learning re-

spectively, which is also referred to as pre-training in self-supervised learning literature.

This prepares the encoders for the fine-tuning step mentioned in the next section.

3.1.3 Deepfake Detection

The second step of MASDT is aimed at the supervised training for the classification

of deepfake images. For this purpose, we employ the encoders that learned to

extract robust representations in the reconstruction pipeline. Thus, to perform binary

classification, a classification head consisting of a simple MLP is attached to each of

the pre-trained encoders.

We adopt a dual-encoder setup for the fine-tuning process, utilizing the spatial

learning encoder θs and the temporal consistency learning encoder θt. These encoders

were previously trained in the initial step of our proposed solution. In the process

of fine-tuning for a binary classification task, we employ a binary cross-entropy loss,

denoted as Lb. The formula for this loss is as follows:

Lb = − 1

M

M∑
j=1

[oj log(ôj) + (1− oj) log(1− ôj)] , (3.3)

Here, ôj is the predicted output from the network, oj represents the actual or target

class (either 0 or 1), and M denotes the total count of samples in the batch.
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Dual Modality Fusion

To further harness the strengths of both θs and θt, we use a simple fusion mechanism.

This method aims to exploit the complementary information that each encoder provides,

thereby improving the overall classification performance. The fusion process begins

with the individual outputs from θs and θt, denoted as ôs and ôt respectively, which

are then combined to create a fused score-level prediction, ôf . Mathematically, this

can be expressed as:

ôf = α · ôs + (1− α) · ôt, (3.4)

where α is a fusion weight that determines the contribution of each encoder to the

final output.

3.2 Experiments

In this section, we present the specifics and details of our method and experiments,

describe the datasets used, and discuss the ablation studies conducted to validate the

impact of different components of our proposed solution.

3.2.1 Implementation Details

In this section, we outline the implementation details of our deepfake detection

method, which incorporates both RGB and optical flow modalities. Our experiments

are conducted using the PyTorch framework [89] on 4 Nvidia A100 GPUs, each with

40 GB of vRAM. We generate optical flow fields using the PWC-Net present in the

MMFlow toolbox [90].

Our method’s performance is evaluated using the top-1 accuracy, which denotes
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the percentage of correctly classified deepfake and real videos out of the total number

of videos in the test set. This metric is widely used in deepfake detection tasks as it

provides a clear indication of a model’s ability to distinguish between real and fake

videos. Accuracy and Area Under the Curve (AUC) are presented as the metrics for

our experiments, following other publications in the area.

For evaluation purposes, we use the FF++ (LQ and HQ) and CelebDF datasets

(the details of these datasets are presented in the next Section) and divide them

into training, validation, and test sets, ensuring an even distribution of deepfake and

real videos across all sets following the instructions provided in the original dataset

papers [45, 1]. Data augmentation techniques such as random cropping, horizontal

flipping, color jittering, and MixUp augmentation, are employed to improve our model’s

robustness to input data variations. MixUp augmentation [91] involves generating new

training samples by taking linear combinations of input data and their corresponding

labels, which encourages the model to learn smooth and robust features. In addition

to MixUp, the model employs CutMix [92] data augmentation technique with default

settings (alpha set to 0, probability set to 1, and switch probability set to 0.5). Label

smoothing is applied with a smoothing factor of 0.1. A drop path rate of 0.1 is used

for stochastic depth regularization.

Input images are resized to 224× 224, with patches of 16× 16. We observe that a

masking ratio of 90% is optimal for pre-training. We use the transformer architecture

[41] with a default Vit-B configuration as our model. The model is trained using the

AdamW optimizer, with a weight decay of 0.05, a base learning rate of 5× 10−4, and

layer decay of 0.8. The learning rate is scaled according to an effective batch size of

64. We train the model for 300 epochs, using a gradient accumulation of 1 iteration.
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We utilize a distributed training approach with distributed evaluation. The CUDA

benchmark is enabled, and the model is trained on available CUDA devices. For

fine-tuning, the model is initialized with our pre-trained weights from the first step

(self-supervised pre-training), and position embeddings are interpolated accordingly.

3.2.2 Datasets

We use the FF++ (LQ), FF++ (HQ) [45], CelebDF [1], Celeb-A [43], and YouTube

Faces [44] datasets. The first three datasets are employed for evaluating our proposed

method, while the latter two are utilized for pre-training only. Below, we provide a

detailed description of each dataset:

FF++ (LQ) [45] simulates various scenarios where manipulated videos appear in

compressed formats. With a 40% compression factor using the H.264 video compression

standard, the LQ version introduces artifacts that may be present in real-world

cases. This dataset challenges researchers to develop techniques capable of detecting

manipulations even when the video quality is degraded due to compression.

FF++ (HQ) [45] maintains a higher quality (compression factor of 23%) compared

to the LQ version, enabling researchers to study deepfakes and other manipulations

with greater detail and less information loss due to compression. Both FF++ versions

contain over 1000 original videos, with manipulated videos created using various

methods, such as Deepfakes (DF) [93], FaceSwap (FS) [94], Face2Face (FF) [95], and

NeuralTextures (NT) [96]. These datasets cover a wide range of manipulation methods,

allowing researchers to test their detection algorithms on diverse types of deepfakes.

In order to further push our method to the limit and challenge its detection ability

in the presence of significant compression artifacts, we create an even more compressed
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version in comparison to FF++ (LQ), which we call FF++ (VLQ) where VLQ

stands for very low quality. To generate this variant of the dataset, we take the original

non-compressed videos of FF++ and compress them by a compression factor of 65%,

which we will also use in our experiments besides the datasets with two standard

compression ratios. For this purpose, we use the FFMPEG framework [97].

CelebDF [1] includes 590 original videos collected from YouTube, featuring subjects

of varying ages, ethnicities, and genders, as well as 5639 corresponding DeepFake

videos. The CelebDF dataset’s average video length is 13 seconds, and all videos have

a standard 30 FPS frame rate.

Celeb-A [43] is a large-scale collection of over 200,000 celebrity images, with 40

attribute labels annotated for each image. The dataset comprises diverse subjects and

captures various facial expressions, poses, and lighting conditions.

YouTube Faces [44] is a comprehensive collection of videos from YouTube focusing

on individuals’ faces. It contains over 3,000 annotated videos of 1,595 people, offering

diverse subjects with different ethnicities, ages, and genders. Each video in the

dataset is labeled with the corresponding subjects’ identities, and is often used for face

recognition and verification tasks. It captures various poses, expressions, illuminations,

and occlusions.

3.2.3 Pre-training Strategy

For pre-training the RGB modality in our proposed method, we utilize the Celeb-A

dataset instead of the typically used ImageNet [98]. Celeb-A is considerably smaller

than ImageNet, as Celeb-A contains 200,000 images whereas ImageNet contains

over 14 million images. This reduced size allows for faster pre-training and lower
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computational requirements, making the process more efficient and accessible to a

wider range of researchers and practitioners. Celeb-A is specifically tailored for facial

tasks, consisting exclusively of human face images. In contrast, ImageNet covers many

object categories and may not be as well-suited and efficient for facial analysis. By

pre-training our model on Celeb-A, we ensure that the initial features learned by the

model are more relevant to facial structures, expressions, and attributes, which can

ultimately contribute to a more effective deepfake detection system.

For pre-training the optical flow modality in our method, we utilize the YouTube

Faces dataset. This dataset provides video data, essential for optical flow calculation.

Naturally, datasets of images such as ImageNet and Celeb-A cannot be used for optical

flow generation. Moreover, the YouTube Faces dataset is specifically designed for facial

analysis tasks as it consists exclusively of human face videos. By pre-training our model

on this dataset, we ensure that the initial features learned by the temporal consistency

encoder can better capture information such as facial structures, expressions, and

attributes, ultimately contributing to a more effective deepfake detection system.

3.2.4 Results

In this section, we present the outcome of our experiments, which assess the perfor-

mance of the proposed method for deepfake detection on the FF++ and CelebDF

datasets. Our evaluation concentrates on the effectiveness of integrating both RGB

and optical flow modalities, as well as the impact of pre-training on the Celeb-A

and YouTube Faces datasets. By contrasting our approach with existing methods

and baseline models, we aim to evaluate the benefits of our technique in accurately

identifying deepfakes under a range of conditions.
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Table 3.1: Quantitative results for ACC and AUC on the FF++ dataset with both
quality settings (LQ and HQ). The results are arranged in ascending order
on the basis of ACC (LQ).

Methods ACC AUC ACC AUC
(HQ) (HQ) (LQ) (LQ)

Steg. Features [99] 70.97% - 55.98% -
LD-CNN [53] 78.45% - 58.69% -
CP-CNN [100] 79.08% - 61.18% -
Face X-ray [101] - 87.40% - 61.60%
C-Conv [102] 82.97% - 66.84% -
MesoNet [54] 83.10% - 70.47% -
FakeCatcher [103] 94.65% - - -
Two-branch RN [104] 96.43% 88.70% 86.34% 86.59%
Xception [105] 95.73% - 86.86% -
LipsDontLie [106] - 97.10% - -
Capsule Net [107] - 99.50% - -
SLADD [64] - 98.40% - -
MADD [56] 97.60% 99.29% 88.69% 90.40%
Self Info. Att. [57] 97.64% 99.35% 90.23% 93.45%
F3-Net [108] 97.52% 98.10% 90.43% 93.30%
E2E Learning [25] 97.06% 99.32% 91.03% 95.02%
Local Relation Learning [59] 97.59% 99.46% 91.47% 95.21%
Ours 98.19% 99.67% 97.79% 98.45%

In Table 3.1 we present the top-1 accuracy and AUC scores of our proposed

method compared to the current state-of-the-art approaches. The table presents

the quantitative results for various deepfake detection techniques available in the

FF++ dataset with both high and low quality settings. It can be observed that

our proposed method achieves the highest accuracy and AUC scores in both quality

settings, surpassing the prior works and setting a new state-of-the-art.

In our experiments, we assess the performance of different deepfake generation

methods in the FF++ (LQ) dataset, comprising four distinct techniques: DeepFakes

(DF) [93], FF (FF) [95], FS (FS) [94], and NT (NT) [96], as illustrated in Table 3.2.

In this table, we present a breakdown of the performance of our method and others
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Table 3.2: Quantitative results (ACC) on the FF++ (LQ) dataset with four manipu-
lation methods: DF, FF, FS, and NT.

Methods DF [93] FF [95] FS [94] NT [96]
Steg. Features [99] 67.00% 48.00% 49.00% 56.00%
LD-CNN [53] 75.00% 56.00% 51.00% 62.00%
C-Conv [102] 87.00% 82.00% 74.00% 74.00%
CP-CNN [100] 80.00% 62.00% 59.00% 59.00%
MesoNet [54] 90.00% 83.00% 83.00% 75.00%
Xception [105] 96.01% 93.29% 94.71% 79.14%
F3-Net [108] 97.97% 95.32% 96.53% 83.32%
Local Relation Learning [59] 98.84 % 95.53% 97.53% 89.31%
Ours 97.84% 96.27% 97.89% 78.23%

Table 3.3: Quantitative results in terms of ACC and AUC on the CelebDF dataset.

Methods ACC AUC
F3-Net [108] 95.95% 98.93%
Xception [105] 97.90% 99.73%
E2E Learning [25] 98.59% 99.94%
Ours 98.00% 98.90%

across these four deepfake generation methods, and compare the accuracy with other

state-of-the-art approaches. The results indicate that our method achieves strong

results across all four manipulation techniques, particularly in the FF and FS methods,

and generates competitive results for the other two. These findings demonstrate the

effectiveness of our approach in detecting manipulated face images across different

forgery approaches.

Next, we evaluate the performance of our method compared to other recent methods

on the CelebDF dataset and present the performance in Table 3.3. It can be observed

that our method achieves results competitive to the current state-of-the-art [25].

To further explore the generalization capability of our model, we follow the cross-

dataset scheme presented in [25], [105], and [59]. In this experiment, we train the

model on the FF++ datasets and test its performance on the CelebDF dataset. We
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Table 3.4: Cross-dataset evaluation (AUC) by training on FF++ (LQ) and testing on
the CelebDF dataset.

Methods AUC
Xception [105] 36.19%
E2E Learning [25] 68.71%
Local Relation Learning [59] 78.26%
Ours 80.21%

present the results in Table 3.4, where we observe that our method outperforms

prior works in the area, indicating strong generalization ability in detecting deepfakes

even when training is done on a different dataset and likely constitutes a different

distribution (out-of-distribution).

To further push our approach to the limit, we explore its performance on the VLQ

version of the FF++ dataset which we constructed for the first time by applying a 65%

compression ratio (see Section 3.2.2). We also use this dataset on two leading methods,

namely DCL [109] and E2E Reconstruction Learning [25]. The results are presented

in Table 3.5 where we observe that our method outperforms both other solutions,

highlighting the efficiency and resilience of our approach in detecting deepfakes, even

in the presence of highly compressed data.

To better contextualize our method within prior works, we compare the performance

of our method to prior methods that have used optical flow and vision transformers

in Tables 3.6 and 3.7 respectively. The results show that we achieve superior results

in comparison to other methods that have used optical flow for deepfake detection

when evaluating on the FF manipulation method of the FF++ dataset. Similarly, we

outperform other methods in the literature that leverage vision transformers.

Lastly, we utilize Grad-CAM [4] visualization on our model and similar performing
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Table 3.5: Quantitative results on FF++ (VLQ) dataset which is constructed by
applying a 65% compression ratio.

Methods ACC
DCL [109] 65.20%
E2E Learning [25] 78.20%
Ours 79.70%

methods to demonstrate and investigate the attention patterns of each method. Grad-

CAM is capable of pinpointing the areas that the network applies more attention to,

and thus deems important. We present a sample image in Figure 3.2, where the red

areas highlight parts of the image which are more salient for the models. We observe

that our model considers broader areas of the face image as important toward detection

of whether the input is a deepfake image or not. This is a noteworthy observation as it

indicates that the proposed method is capable of capturing a more comprehensive set

of features and artifacts, which might be overlooked by the other models. This ability

to focus on multiple areas simultaneously could enable the proposed method to better

discern subtle inconsistencies and artifacts that are characteristic of deepfakes or

manipulated images. In contrast, the other two models, with their more concentrated

attention patterns, may be less effective in capturing the full extent of these subtle

cues, which might result in lower overall performance in detecting such forgeries.

Another interesting pattern which can be observed is that prior methods seem to focus

on select areas, namely the left eye and to some extent the right ear. However, in

addition to these regions, our method considers the nose and mouth regions, which

are critical areas for authentic face images.
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Figure 3.2: Comparison of Grad-CAM visualizations [4] for our method in comparison
to two other recent works.

Table 3.6: Comparison to prior deepfake detection methods that use optical flow. The
results are reported on the FF manipulation method of FF++.

Methods Training dataset AUC
OF + CNN [73] FF++ -
OF + CNN [74] FF++ -
OF + CNN-LSTM [75] - 79.00
Ours FF++ (LQ) 80.21
Ours FF++ (HQ) 82.19

3.2.5 Ablation Studies

In this section, we investigate the contributions of different components of our method

toward facial forgery detection. As the first step, we remove the temporal consistency

encoder and present the results in Tables 3.8, 3.9, and 3.10, for FF++ (LQ), FF++

(HQ), and CelebDF, respectively. When comparing these results to the performance

of our original method (also presented in each table), we observe that removing the

temporal consistency encoder results in performance drops of 1.2% to 2.9%. This
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Table 3.7: Comparison to other ViT-based deepfake detection methods. The results
are reported on FF++.

Methods Training Dataset AUC
ViXNet [110] FF++ 74.78
Conv ViT [81] FF++ 71.80
UIA-ViT [77] FF++ 99.33
Ours FF++ (HQ) 99.67

indicates the importance of learning additional temporal information through optical

flow which may be difficult for the model to learn without explicit supervision.

Next, we examine the impact using simple score-level fusion in our model. To

this end, we adopt two strategies instead. First, we use the joint learning approach

proposed in [111], where a single pre-trained encoder accepts patches from both the

RGB and optical flow modalities simultaneously. Second, instead of score-level fusion,

we use feature-level fusion immediately after the embeddings are obtained from the

spatial and temporal consistency encoders. The results for both experiments are

presented in Tables 3.8, 3.9, and 3.10, for the three datasets, respectively. We observe

that while feature-level fusion achieves results closer to ours in comparison to joint

learning, our method still obtains superior results to both these strategies.

Lastly we illustrate the Receiver Operating Characteristic (ROC) curves for our

method (depicted in blue) and the three ablated variants discussed above, in Figure

3.3. These results are obtained on the FF++ (LQ), demonstrated in Table 3.8. We

observe that the true positive rates are generally higher than the model variants across

different false positive rate regions, except for the version where temporal consistency

is not used, which shows comparable results in true positive rates for high false positive

regions. This indicates that the temporal consistency component is highly effective in

reducing the number of false alarms.
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Table 3.8: Ablation experiments on FF++ (LQ).

Technique ACC AUC
Proposed 97.79% 98.45%
w/o temporal consistency 96.51% 97.03%
w/ joint learning [111] 95.02% 97.05%
w/ feature-level fusion 96.01% 97.10%

Table 3.9: Ablation experiments on FF++ (HQ).

Technique ACC AUC
Proposed 98.19% 99.67%
w/o temporal consistency 96.90% 97.35%
w/ joint learning [111] 95.81% 97.58%
w/ feature-level fusion 98.01% 99.09%

Table 3.10: Ablation experiments on CelebDF.

Technique ACC AUC
Proposed 98.00% 98.90%
w/o temporal consistency 95.08% 97.17%
w/ joint learning [111] 95.06% 96.55%
w/ feature-level fusion 96.81% 98.10%
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w/ feature-level fusion: AUC=0.9710

Figure 3.3: ROC curves for our proposed method (blue) and three ablations on the
FF++ (LQ) dataset.
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Chapter 4

Toward Fair Deepfake Detection via Embedding

Distribution Alignment

4.1 Proposed Method

In this work, we introduce a novel loss term called FairAlign for enhancing fairness in

deepfake detection. Training a deepfake detector using FairAlign causes the alignment

of conditional distributions of embeddings given different sensitive attributes. Our

fairness-enhancing approach is inspired by domain adaptation tasks [112, 113, 114]

and is considered an in-processing fairness technique [115], as it intervenes directly

within the learning algorithm to promote fairness.

4.1.1 Problem Setup

Let us represent a triplet {(xi, yi, zi)}Ni=1, where xi denotes the embedding generated

by deepfake detection model for the ith input image, yi is its corresponding forgery

label (real, fake), and zi is the associated sensitive attribute (e.g., female, male, etc.).

For simplicity, we can assume that the embeddings xi are independent and identically

distributed. Additionally, let X, Y , and Z be the random variables associated with the
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embeddings, their labels, and the sensitive attributes, respectively. Let the distribution

of X be defined over the set X and the distribution of Z be defined over the set Z.

Also, let the cardinality of the set Z be equal to ζ; for example, in the FF++ dataset,

ζ = 2 for gender, which corresponds to male and female. We alternatively denote

embeddings xi as xai and xbi where a and b denote elements in the set Z. Let us denote

P( . ) as the probability distribution of an arbitrary random variable. Accordingly, the

optimum condition for a fair classifier is denoted by

PŶ (ŷ|Z = zi) = PŶ (ŷ|Z = zj) ∀zi, zj ∈ Z, (4.1)

where Ŷ represents the random variable associated with the classifier’s output, i.e.,

the predicted forgery category. This optimum condition is also known as demographic

parity, which is the objective of many bias-mitigating methods [116]. In this thesis, we

aim to reduce the information related to the sensitive attribute zi from the embeddings

using our proposed loss.

4.1.2 FairAlign

Our overall goal is to accurately capture and minimize the distance between the

distributions of embeddings given different sensitive attributes, through a novel loss

term. The discrepancy between two distributions can be captured with regard to

different statistical measures like expected value, covariance, etc. However, it has been

shown that simply considering the arithmetic difference of such statistical measures,

particularly in lower dimensions, cannot effectively capture the discrepancy [117]. As

an example, Maximum Mean Discrepancy (MMD) [118] uses the difference in expected

values of two distributions in high dimensions (specifically, Reproducing Kernel Hilbert

Space (RKHS) [119]) to render the discrepancy between two distributions. In contrast,
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the Bures metric [120], which defines the discrepancy between two distributions as the

difference between their covariance matrices, cannot effectively capture the discrepancy

unless the data are mapped onto a high dimensional space. To avoid explicit data

projection onto higher dimensions and the additional computational load required

to measure the difference in high-dimensional space, kernel functions [121] can be

used to operate directly in low-dimensional space. Usage of kernel functions allows

establishing the Bures metric in RKHS [119] where it is viable to be used as a distance

metric [121]. This is also termed the Kernel Bures metric. Building on this concept,

we utilize the Conditional Kernel Bures (CKB) metric, which is particularly designed

for conditional distributions [122, 117].

As defined earlier, {xai , zai }ni=1 and {xbj, zbj}mj=1 are sets of embeddings corresponding

to different sensitive attributes, drawn from the conditional distributions PX|Z=za

and PX|Z=zb , respectively. Let’s define kernel functions kX and kZ on the space of

embeddings X and Z, respectively. Further, we define ϕ(x) = kX (x, .) and ψ(z) =

kZ(z, .) as feature mappings from X to RKHS HX and Z to RKHS HZ respectively.

Now, let us denote either a or b by the notation a/b. Accordingly Ka/b
XX , Ka/b

ZZ , and Kba
XX

are the kernel matrices, where (K
a/b
XX)ij = kX (x

a/b
i , x

a/b
j ), (Ka/b

ZZ )ij = kZ(z
a/b
i , z

a/b
j ), and

(Kba
XX)ij = kX (x

b
i , x

a
j ).

The feature mappings can therefore be represented by Φa/b =[
ϕ(x

a/b
1 ), . . . , ϕ(x

a/b
n/m)

]
and Ψa/b =

[
ψ(z

a/b
1 ), . . . , ψ(z

a/b
n/m)

]
. Consequently, as

illustrated in [117], the empirical cross-covariance matrices are denoted by

Âa
XZ = 1

n
ΦaJnΨ

⊤
a and Âb

XZ = 1
m
ΦbJmΨ

⊤
b , with Jn = (In − 1

n
1n1

⊤
n ) as the centering

matrix of size n×n, In as the identity matrix, and 1n as a vector of ones of dimension

n (similarly for Jm, Im, and 1m). The covariance matrices Âa/b
XX and Âa/b

ZZ are defined
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in a similar fashion. Moreover, the empirical conditional covariance is defined as

Â
a/b
XX|Z = Â

a/b
XX − Â

a/b
XZ

(
Â

a/b
ZZ + ϵI

)−1
Â

a/b
ZX , (4.2)

where ϵI acts as a regularizer to the ÂZZ matrix and ϵ > 0 is the regularization factor.

The regularization is done due to the rank deficiency of the matrix ÂZZ . We denote

the matrices

Qa ≜ In − 1

nϵ

[
Ma

Z −Ma
Z (Ma

Z + ϵnIn)
−1Ma

Z

]
(4.3)

Qb ≜ Im − 1

mϵ

[
M b

Z −M b
Z

(
M b

Z + ϵmIm

)−1
M b

Z

]
(4.4)

where the centralized kernel matrices are defined as Ma
Z = JnK

a
ZZJn and M b

Z =

JmK
b
ZZJm. Using the Cholesky decomposition [123] Qa/b = Sa/bS

T
a/b, where Q is a

positive-definite matrix [117] and S is the lower-triangular matrix obtained from the

decomposition. Accordingly, we can reformulate the conditional covariance operator

Âa
XX|Z as

Âa
XX|Z =

1

n
ΦaJnSa (ΦaJnSa)

T , (4.5)

and respectively for Âb
XX|Z . The empirical CKB metric is accordingly defined as

d̂2CKB(PX|Z=za , PX|Z=zb) = d̂2CKB(Â
a
XX|Z , Â

b
XX|Z)

= ϵ tr
[
Ma

X (ϵnIn +Ma
Z)

−1
]
+ ϵ tr

[
M b

X

(
ϵmIm +M b

Z

)−1
]

− 2√
m× n

∥∥∥(JmSb)
T Kba

XX (JnSa)
∥∥∥
∗
,

(4.6)

where ∥ · ∥∗ is the nuclear norm. The empirical CKB metric is differentiable and highly

suitable for usage as a loss function.

Total Loss for Deepfake Detection.

Based on Equation 4.6, we define LFairAlign as

LFairAlign =
∑

∀(zi,zj)∈Z

d̂2CKB(PX|Z=zi , PX|Z=zj ). (4.7)



4.1. PROPOSED METHOD 38

Additionally, we use a binary cross-entropy loss, Lce for supervising the deepfake

detector to discriminate between real and fake samples, defined as

Lce = − 1

Ω

Ω∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)] . (4.8)

Here, Ω denotes the total count of samples in the batch. Finally, we define the total

loss as

L = Lce + λ · LFairAlign (4.9)

where λ is a hyperparameter to control the contribution of the CKB term.

4.1.3 Skin Tone Fairness Enhancement

As indicated earlier, in addition to a fair deepfake detection solution, we aim to detect

skin tone. To this end, we first perform face detection using MobileFaceNet backbone

[124] along with the ArcFace loss [47]. We then employ the U-Net model presented in

[48] to segment skin regions from the extracted facial image. Next, we compute the

average color of the facial skin pixels to obtain the overall skin tone. Finally, we intend

to use a standard definition for characterizing the estimated skin tone. To do so, we

use the Monk Skin Tone (MST) scale [49]. Therefore, to identify the corresponding

tone from the MST scale, we compute the closest neighbour based on the Euclidean

norm between our measured average tone and the tones in the MST scale.

4.1.4 Fairness-Accuracy Trade-off Assessment

Finally, the third goal of our work is to conduct a comprehensive analysis of fairness-

accuracy trade-off in the context of deepfake detection. Multiple studies have previously

indicated the presence of an intrinsic trade-off between fairness and accuracy [34, 33,

37, 36], although not in the area of deepfake detection. To this end, we employ two
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metrics to characterize this trade-off in this context for the first time: (1) Fairea: The

Fairea approach [5] first assesses how a model’s predictions would change if it were

less biased. This is done by manipulating the model’s predictions to reflect a range of

hypothetical scenarios from slightly to fully unbiased, which is referred to as ‘mutation’

in [5]. The range of mutation can be from 10% to 100%, with 10% increments at each

step. These adjusted predictions create a spectrum of potential fairness values within

the model, referred to as the ‘baseline’. This baseline, along with the coordinates of an

arbitrary bias-mitigation method, form an enclosed region whose area quantifies the

trade-off. When evaluating two bias mitigation methods, the one with the larger area

is considered to have achieved a better fairness-accuracy trade-off. We illustrate this

approach in Figure 4.1. (2) Harmonic Mean: HM takes into account both accuracy

and fairness in the form of HM = 2A×F
A+F , where A represents accuracy and F stands for

fairness. We apply the same rationale as various works that use F1 score [50], wherein

a harmonic mean formulation has been used to balance two diverging objectives [51].

4.2 Experiments

4.2.1 Experiment Setup

Datasets. We conduct all the experiments based on two popular datasets, FF++

[46], CelebDF [1]. FF++ comprises 1000 Baseline and 4000 forged videos with several

visual quality levels, raw (no compression), high quality, and low quality. CelebDF

contains 590 real and 5639 fake videos. Since both the FF++ and CelebDF provide

only the video-level labels, we sample frames out of these videos using FFMPEG [97]

and perform facial cropping on these frames using the ArcFace detection model [47].

Evaluation metrics. To comprehensively assess fairness, we employ five bias metrics.
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Figure 4.1: Schematic of the Fairea [5] trade-off evaluation metric.

First, following [125, 3], we use the maximum difference in False Positive Rate (FPR)

gap, equal FPR, and equal odds, denoted by GFPR, FFPR, and FEO respectively. These

metrics are defined as

GFPR := max
∀zi,zj∈Z

∣∣FPRzi−FPRzj

∣∣, (4.10)

FFPR :=
∑
zi∈Z

∣∣∣∣∣
∑n

i=1 1[Ŷi=1,Z=zi,Yi=0]∑n
i=1 1[Z=zi,Yi=0]

−
∑n

i=1 1[Ŷi=1,Yi=0]∑n
i=1 1[Yi=0]

∣∣∣∣∣, (4.11)

FEO :=
∑
zi∈Z

1∑
q=0

∣∣∣∣∣
∑n

i=1 1[Ŷi=1,Z=zi,Yi=q]∑n
i=1 1[Z=zi,Yi=q]

−
∑n

i=1 1[Ŷi=1,Yi=q]∑n
i=1 1[Yi=q]

∣∣∣∣∣, (4.12)

where FPRzi represents the FPR scores of group zi, 1[ ] denotes the indicator function,

and q represents the forgery label (1 is real and 0 is fake). Also note that in the special

case when Z corresponds to gender, which means ζ = 2, the metrics GFPR and FFPR

will return the same value. Additionally, following [126], we use Demographic Parity

Difference (DPD) and Demographic Parity Ratio (DPR), which are formulated as

DPD = max
zi∈Z

P (Ŷ = 1|Z = zi)− min
zi∈Z

P (Ŷ = 1|Z = zi), (4.13)



4.2. EXPERIMENTS 41

DPR =
minzi∈Z P (Ŷ = 1|Z = zi)

maxzi∈Z P (Ŷ = 1|Z = zi)
. (4.14)

DPD measures the disparity in positive outcomes across different groups, with an ideal

value of 0 indicating no disparity. Conversely, DPR assesses the relative disparity,

with an ideal value of 1 suggesting equal positive outcome rates across all groups.

Finally, to assess the performance of different deepfake detectors, we utilize four

widely-used metrics [3]: AUC, FPR, True Positive Rate (TPR), and top-1 accuracy

(ACC).

Baseline methods. To validate the efficacy of our proposed loss term, LFairAlign , we

integrate it into the training process of 5 state-of-the-art deepfake detector backbones:

RECCE [25], MASDT [23], AltFreezing [24], EfficientNet-B3 [127], and EfficientNet-B4

[2]. The objective is to assess the impact of LFairAlign on the fairness of these models.

For a thorough analysis, we benchmark our approach against 4 state-of-the-art bias-

mitigating methods: DAG-FDD [3], DAW-FDD [3], DRO-χ2 [128], and MMD

loss [129]. Furthermore, to establish baseline performances, each model is also trained

without any fairness-enhancing module.

Implementation details. All experiments are conducted using the PyTorch frame-

work [130] on up to 8 NVIDIA A100 PCIE GPUs. We train all methods using the

AdamW optimizer [131] with a batch size of 32, a maximum of 100 epochs, and a

learning rate of 0.001. The optimizer employs first and second momentum decays of

0.9 and 0.999, respectively. Additionally, we use a weight decay of 0.01 to refine the

training process. The learning rate is adjusted using a step scheduler, which decreases

the learning rate by a factor of 0.5 every 5 epochs. The video frame input size is

set to 380 pixels, with training augmentations including resizing, normalization and

horizontal flipping. For the face detection process mentioned in Section 4.1.3, we use
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the InsightFace toolkit [132]. For the ϵ used in Equation 4.2, we adhere to 0.01 as per

the design choice outlined in [117].

4.2.2 Results

Performance. We present a thorough analysis of the performance of our approach on

the FF++ and CelebDF datasets in Tables 4.1 and 4.2 respectively. First, evaluating

the average results of FairAlign against the baselines demonstrates that our approach

substantially promotes fairness across all three metrics for both gender and skin tone,

as well as the intersection of the two. Comparing the performance of our method

averaged across backbones, against other fairness-promoting solutions, we observe

that our method generally achieves the best fairness scores, with exceptions in the

intersection group, where MMD achieves marginally higher scores for FFPR and FEO on

the FF++ dataset. Similarly, MMD obtains slightly better results in the intersection

group with GFPR on CelebDF.

Delving deeper into the results, we observe that on FF++, our method FairAlign

applied to EfficientNet-B3 achieves the lowest GFPR (and similarly FFPR) of 0.16%

in gender, in a tie with MMD when applied to the RECCE network. Similarly in

CelebDF, FairAlign with MASDT achieves the lowest GFPR (and FFPR) in gender

with a score of 0.19%. For FEO our method obtains the best performance on gender

when coupled with EfficientNet-B4 on FF++, while on CelebDF, MMD results in the

best outcome with the same backbone. For skin tone, on FF++, MMD achieves the

best performance for GFPR along with the AltFreezing deepfake detection method.

However, for FFPR and FEO, our method obtains the best results with EfficientNet-B3

and MASDT backbones respectively. On CelebDF, our method consistently achieves
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Table 4.1: Results on FF++. Best results in each column are in bold and second-best
results are underlined.

Methods Backbones
Bias Metrics (%)↓ Detection Metrics (%)

Gender Skin Tone Intersection Overall
GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC↑ FPR↓ TPR↑ ACC↑

Baseline

EfficientNet-B3 [2] 1.97 1.97 8.15 11.05 10.86 32.19 14.38 22.65 44.13 94.72 20.25 97.21 94.09
RECCE [25] 1.27 1.27 9.14 18.81 29.65 25.07 30.26 69.38 82.34 98.05 21.20 98.21 94.74

EfficientNet-B4 [2] 1.97 1.97 7.85 11.56 10.86 34.12 23.89 20.56 42.13 95.91 20.25 97.21 94.09
MASDT [23] 1.38 1.38 19.71 14.64 11.89 11.39 18.07 14.32 41.46 96.21 3.65 97.13 97.60

AltFreezing [24] 2.82 2.82 10.54 18.37 9.85 18.09 12.02 33.74 40.74 97.84 8.42 96.27 98.10
Average 1.88 1.88 11.08 14.89 14.62 24.17 19.72 32.13 50.16 96.55 14.75 97.21 95.72

DAG-FDD

EfficientNet-B3 [2] 0.67 0.67 5.36 11.48 9.58 13.50 12.87 19.34 46.08 97.01 8.40 92.87 92.65
RECCE [25] 0.75 0.75 5.71 14.68 19.41 19.33 25.40 38.17 76.24 98.33 12.01 96.80 95.23

EfficientNet-B4 [2] 0.61 0.61 4.86 13.81 16.85 20.55 17.50 30.88 52.63 94.15 21.58 95.60 92.92
[3] MASDT [23] 0.58 0.58 18.70 10.60 9.84 7.36 16.04 14.27 30.39 96.95 5.67 97.63 98.29

AltFreezing [24] 2.64 2.64 10.01 11.18 9.27 17.42 11.30 32.62 37.69 97.10 7.87 95.59 97.44
Average 1.05 1.05 8.93 12.35 12.99 15.63 16.62 27.06 48.61 96.71 11.11 95.70 95.31

DAW-FDD

EfficientNet-B3 [2] 0.34 0.34 6.53 6.79 11.67 12.63 8.43 12.57 43.72 95.96 8.22 91.43 91.49
RECCE [25] 0.45 0.45 7.95 6.99 9.96 13.95 23.54 25.44 54.95 98.35 8.15 94.59 94.10

EfficientNet-B4 [2] 0.55 0.55 3.71 13.65 17.35 20.30 15.34 36.00 56.19 90.44 2.00 96.91 95.40
[3] MASDT [23] 0.45 0.45 17.71 8.62 8.86 9.87 12.05 13.29 33.42 96.86 5.41 97.81 98.13

AltFreezing [24] 2.72 2.72 10.03 6.20 9.39 17.71 11.79 32.24 37.54 97.64 8.19 95.91 97.81
Average 0.90 0.90 9.19 8.45 11.45 14.89 14.23 23.90 45.16 95.85 6.39 95.33 95.39

DROχ2

EfficientNet-B3 [2] 0.23 0.23 4.42 4.71 6.58 12.38 6.30 12.32 42.85 94.37 8.06 89.60 89.66
RECCE [25] 0.33 0.33 5.46 6.15 9.08 11.71 20.27 24.97 64.89 98.32 7.99 96.48 95.98

EfficientNet-B4 [2] 0.54 0.54 3.64 11.40 17.00 19.89 15.03 35.28 51.11 93.90 1.96 98.10 96.77
[133] MASDT [23] 0.64 0.64 15.68 6.51 9.04 7.24 12.93 13.04 41.15 98.29 3.22 98.96 97.37

AltFreezing [24] 2.67 2.67 9.83 5.10 9.20 17.36 11.55 31.60 26.19 98.86 8.03 97.22 98.75
Average 0.88 0.88 7.81 6.77 10.18 13.72 13.22 23.44 45.24 96.75 5.85 96.07 95.71

MMD

EfficientNet-B3 [2] 0.35 0.35 6.65 5.88 4.78 12.91 5.62 12.84 44.95 93.57 8.49 94.11 94.01
RECCE [25] 0.16 0.16 6.19 7.14 10.18 9.19 18.98 20.08 66.46 96.96 8.42 93.65 93.53

EfficientNet-B4 [2] 0.39 0.39 2.59 8.72 13.03 15.05 10.34 25.47 39.50 92.64 1.58 97.08 95.60
[129] MASDT [23] 0.32 0.32 14.20 5.89 6.94 5.87 10.20 11.43 29.18 97.04 1.23 98.02 98.32

AltFreezing [24] 2.02 2.02 7.06 3.74 7.18 12.61 7.78 22.30 21.01 97.82 5.78 96.14 98.05
Average 0.65 0.65 7.34 6.27 8.42 11.13 10.58 18.42 40.22 95.61 5.10 95.80 95.90

FairAlign

EfficientNet-B3 [2] 0.16 0.16 5.78 3.97 3.59 10.15 4.74 13.09 45.74 92.87 8.59 95.19 93.66
RECCE [25] 0.19 0.19 4.98 6.02 10.03 10.50 14.21 21.58 57.54 96.74 8.53 93.60 93.03

EfficientNet-B4 [2] 0.39 0.39 2.07 6.54 12.29 11.79 8.10 22.95 45.08 91.78 1.47 97.24 95.75
(Ours) MASDT [23] 0.29 0.29 12.00 4.01 5.28 5.38 8.26 11.72 23.07 97.23 1.67 98.11 98.46

AltFreezing [24] 1.74 1.74 6.03 4.10 7.05 10.17 5.90 23.78 31.23 97.97 5.36 96.26 98.13
Average 0.55 0.55 6.17 4.93 7.65 9.60 8.24 18.62 40.53 95.32 5.12 96.08 95.81

the lowest bias when coupled with MASDT, EfficientNet-B3, and MASDT, for the

three metrics respectively. For the intersection of the two (gender and skin tone),

on FF++, our approach outperforms the others based on GFPR using EfficientNet-

B3, while MMD shows better performance on FFPR and FEO using MASDT and

AltFreezing respectively. On CelebDF, MMD achieves better intersection results based
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Table 4.2: Results on CelebDF. Best results in each column are in bold and second-
best results are underlined.

Methods Backbones
Bias Metrics (%)↓ Detection Metrics (%)

Gender Skin Tone Intersection Overall
GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC↑ FPR↓ TPR↑ ACC↑

Baseline

EfficientNet-B3 [2] 3.82 3.82 7.54 11.37 9.85 14.09 21.25 45.47 70.74 94.13 9.25 92.27 95.04
RECCE [25] 2.71 2.71 3.14 18.81 27.65 30.07 30.26 67.38 80.34 94.05 12.20 95.21 95.74

EfficientNet-B4 [2] 1.21 1.21 5.15 10.05 20.86 34.12 13.38 22.65 40.13 93.91 10.25 97.21 93.09
MASDT [23] 0.48 0.48 3.71 8.64 10.89 9.39 12.07 15.32 16.46 96.61 5.05 94.13 95.60

AltFreezing [24] 1.71 1.71 8.52 7.25 12.63 22.65 23.83 42.65 40.13 95.91 8.25 94.11 96.09
Average 1.99 1.99 5.61 11.22 16.38 22.06 20.16 38.69 49.56 94.92 9.00 94.59 95.11

DAG-FDD

EfficientNet-B3 [2] 3.65 3.65 8.01 9.18 9.27 11.42 12.30 42.62 67.96 93.02 10.72 92.59 95.20
RECCE [25] 1.45 1.45 3.71 12.68 17.41 19.33 15.40 36.17 64.24 94.33 10.01 95.80 93.23

EfficientNet-B4 [2] 0.61 0.61 4.86 12.81 16.85 20.55 17.50 30.88 52.63 92.15 11.58 95.60 94.92
[3] MASDT [23] 0.58 0.58 3.70 8.60 10.84 9.36 12.04 15.27 16.39 95.95 5.55 93.63 96.29

AltFreezing [24] 0.97 0.97 6.63 7.81 11.83 18.24 20.81 39.34 46.08 97.20 7.02 94.75 96.65
Average 1.45 1.45 5.38 10.22 13.24 15.78 15.61 32.86 49.46 94.53 8.98 94.47 95.26

DAW-FDD

EfficientNet-B3 [2] 3.56 3.56 7.03 7.20 6.39 9.18 11.79 42.24 67.45 93.41 9.98 92.91 95.17
RECCE [25] 0.95 0.95 4.75 6.99 7.96 11.95 13.54 23.44 62.95 92.35 12.15 94.59 92.10

EfficientNet-B4 [2] 0.45 0.45 3.71 12.65 17.35 20.30 15.34 36.00 54.19 91.44 12.00 96.91 93.40
[3] MASDT [23] 0.38 0.38 3.71 8.62 10.86 9.37 12.05 15.29 16.02 95.56 4.55 94.81 96.13

AltFreezing [24] 0.43 0.43 5.34 5.96 10.62 17.82 11.53 37.57 43.72 96.30 7.26 93.32 97.49
Average 1.15 1.15 4.91 8.28 10.64 13.72 12.85 30.91 48.87 93.81 9.19 94.51 94.86

DROχ2

EfficientNet-B3 [2] 3.40 3.40 6.83 8.10 9.20 12.36 11.55 39.60 66.95 93.63 6.32 93.22 96.62
RECCE [25] 0.84 0.84 4.66 6.85 7.80 10.71 13.27 22.97 71.89 91.32 10.99 93.48 90.98

EfficientNet-B4 [2] 0.44 0.44 3.64 12.40 17.00 19.89 15.03 35.28 53.11 90.90 11.96 98.10 94.77
[133] MASDT [23] 0.22 0.22 3.68 8.51 10.70 9.24 9.93 15.04 16.15 95.29 5.54 93.96 96.37

AltFreezing [24] 0.33 0.33 5.23 6.16 10.83 17.91 11.14 32.32 42.85 94.37 6.62 90.01 95.66
Average 1.05 1.05 4.81 8.40 11.11 14.02 12.18 29.04 50.19 93.10 8.29 93.75 94.88

MMD

EfficientNet-B3 [2] 3.02 3.02 5.06 6.74 11.18 10.61 7.78 28.30 51.17 94.20 6.88 92.14 95.25
RECCE [25] 0.76 0.76 4.89 7.14 8.18 12.19 13.98 24.08 64.46 92.96 10.42 92.65 91.53

EfficientNet-B4 [2] 0.29 0.29 2.59 8.72 13.03 15.05 10.34 25.47 37.50 92.64 12.58 97.08 94.60
[129] MASDT [23] 0.31 0.31 3.20 6.89 7.94 7.87 9.20 12.43 14.18 96.04 4.40 92.02 97.32

AltFreezing [24] 0.52 0.52 4.54 6.85 10.97 18.83 11.32 28.84 44.95 94.57 6.91 96.15 97.01
Average 0.98 0.98 4.06 7.27 10.26 12.91 10.52 23.82 42.45 94.08 8.24 94.01 95.14

FairAlign

EfficientNet-B3 [2] 2.67 2.67 4.39 5.19 5.54 7.77 9.08 23.78 41.39 94.71 5.61 93.26 96.33
RECCE [25] 0.86 0.86 4.98 7.32 8.30 10.50 14.21 24.58 55.54 93.74 7.53 91.60 94.03

EfficientNet-B4 [2] 0.29 0.29 2.77 6.54 12.99 11.79 12.10 22.95 33.08 93.78 11.47 97.24 94.75
(Ours) MASDT [23] 0.19 0.19 3.00 5.01 7.88 7.38 9.16 12.72 12.07 96.23 5.40 92.11 97.46

AltFreezing [24] 0.29 0.29 4.86 5.78 10.17 16.95 11.45 31.09 45.74 97.87 6.28 96.94 97.66
Average 0.86 0.86 4.00 5.97 8.98 10.88 11.20 23.02 37.56 95.27 7.26 94.23 96.05

on GFPR and FFPR using EfficientNet-B3 and MASDT, while ours outperforms other

methods based on FEO using the MASDT method.

A similar trend is observed for the additional two metrics, DPD and DPR, presented

in Tables 4.3 and 4.4. Our method’s performance, averaged across backbones, achieves

the lowest DPD and the highest DPR across all groups based on gender, skin tone, and
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Table 4.3: DPR and DPD results on FF++. Best results in each column are in bold
and second-best results are underlined.

Methods Backbones
Bias Metrics

Gender Skin Tone Intersection
DPD ↓ DPR ↑ DPD ↓ DPR ↑ DPD ↓ DPR ↑

Baseline

EfficientNet-B3 [2] 0.29 0.79 0.38 0.64 0.55 0.56
RECCE [25] 0.39 0.77 0.39 0.67 0.49 0.72

EfficientNet-B4 [2] 0.49 0.69 0.46 0.73 0.53 0.66
MASDT [23] 0.47 0.77 0.54 0.68 0.42 0.52

AltFreezing [24] 0.38 0.67 0.47 0.73 0.54 0.65
Average 0.40 0.74 0.45 0.69 0.51 0.62

DAG-FDD

EfficientNet-B3 [2] 0.20 0.82 0.22 0.85 0.32 0.88
RECCE [25] 0.22 0.80 0.41 0.89 0.36 0.85

EfficientNet-B4 [2] 0.30 0.72 0.27 0.85 0.24 0.88
[3] MASDT [23] 0.32 0.89 0.35 0.79 0.33 0.74

AltFreezing [24] 0.29 0.89 0.48 0.84 0.43 0.56
Average 0.27 0.82 0.35 0.84 0.34 0.78

DAW-FDD

EfficientNet-B3 [2] 0.21 0.88 0.30 0.89 0.39 0.91
RECCE [25] 0.24 0.84 0.41 0.92 0.20 0.87

EfficientNet-B4 [2] 0.21 0.84 0.28 0.87 0.54 0.90
[3] MASDT [23] 0.28 0.92 0.46 0.83 0.17 0.86

AltFreezing [24] 0.21 0.92 0.39 0.87 0.37 0.79
Average 0.23 0.88 0.37 0.88 0.33 0.87

DROχ2

EfficientNet-B3 [2] 0.29 0.82 0.29 0.85 0.40 0.87
RECCE [25] 0.13 0.89 0.20 0.88 0.28 0.83

EfficientNet-B4 [2] 0.39 0.70 0.36 0.84 0.37 0.87
[133] MASDT [23] 0.17 0.88 0.34 0.79 0.35 0.63

AltFreezing [24] 0.18 0.88 0.27 0.84 0.30 0.76
Average 0.23 0.83 0.29 0.84 0.34 0.79

MMD

EfficientNet-B3 [2] 0.20 0.85 0.19 0.87 0.35 0.89
RECCE [25] 0.16 0.90 0.31 0.89 0.26 0.86

EfficientNet-B4 [2] 0.40 0.61 0.47 0.85 0.44 0.89
[129] MASDT [23] 0.28 0.90 0.48 0.81 0.27 0.74

AltFreezing [24] 0.14 0.90 0.28 0.85 0.24 0.83
Average 0.24 0.83 0.35 0.85 0.31 0.84

FairAlign

EfficientNet-B3 [2] 0.17 0.90 0.11 0.97 0.23 0.93
RECCE [25] 0.12 0.94 0.32 0.93 0.20 0.90

EfficientNet-B4 [2] 0.12 0.76 0.29 0.87 0.39 0.92
(Ours) MASDT [23] 0.18 0.93 0.37 0.83 0.18 0.85

AltFreezing [24] 0.11 0.94 0.29 0.89 0.15 0.89
Average 0.14 0.89 0.28 0.90 0.23 0.90

intersectional categories. Among the backbones, the AltFreezing detector consistently

achieves either the best or the second-best position for gender metrics in both the

FF++ and CelebDF benchmarks. Similarly, EfficientNet-B3 tends to achieve the best
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Table 4.4: DPR and DPD results on CelebDF. Best results in each column are in
bold and second-best results are underlined.

Methods Backbones
Bias Metrics

Gender Skin Tone Intersection
DPD ↓ DPR ↑ DPD ↓ DPR ↑ DPD ↓ DPR ↑

Baseline

EfficientNet-B3 [2] 0.39 0.89 0.28 0.84 0.44 0.86
RECCE [25] 0.36 0.77 0.39 0.67 0.45 0.62

EfficientNet-B4 [2] 0.38 0.72 0.36 0.83 0.43 0.62
MASDT [23] 0.37 0.63 0.44 0.78 0.42 0.62

AltFreezing [24] 0.38 0.87 0.31 0.83 0.34 0.85
Average 0.38 0.78 0.36 0.79 0.42 0.71

DAG-FDD

EfficientNet-B3 [2] 0.40 0.92 0.28 0.85 0.45 0.88
RECCE [25] 0.22 0.79 0.41 0.69 0.56 0.65

EfficientNet-B4 [2] 0.28 0.73 0.37 0.85 0.64 0.58
[3] MASDT [23] 0.27 0.79 0.32 0.79 0.33 0.64

AltFreezing [24] 0.29 0.89 0.38 0.84 0.44 0.86
Average 0.29 0.82 0.35 0.80 0.48 0.72

DAW-FDD

EfficientNet-B3 [2] 0.41 0.94 0.30 0.89 0.66 0.91
RECCE [25] 0.24 0.73 0.41 0.62 0.36 0.67

EfficientNet-B4 [2] 0.29 0.77 0.38 0.87 0.34 0.60
[3] MASDT [23] 0.28 0.62 0.27 0.83 0.53 0.66

AltFreezing [24] 0.25 0.92 0.39 0.87 0.25 0.89
Average 0.29 0.80 0.35 0.82 0.43 0.75

DROχ2

EfficientNet-B3 [2] 0.39 0.90 0.28 0.85 0.54 0.87
RECCE [25] 0.31 0.78 0.40 0.68 0.45 0.63

EfficientNet-B4 [2] 0.35 0.73 0.36 0.84 0.43 0.57
[133] MASDT [23] 0.17 0.88 0.34 0.79 0.32 0.63

AltFreezing [24] 0.18 0.88 0.35 0.84 0.34 0.86
Average 0.28 0.83 0.35 0.80 0.42 0.71

MMD

EfficientNet-B3 [2] 0.40 0.91 0.29 0.87 0.25 0.89
RECCE [25] 0.19 0.87 0.41 0.69 0.56 0.66

EfficientNet-B4 [2] 0.29 0.75 0.37 0.85 0.24 0.79
[129] MASDT [23] 0.10 0.90 0.30 0.81 0.22 0.64

AltFreezing [24] 0.15 0.90 0.38 0.85 0.30 0.88
Average 0.23 0.87 0.35 0.81 0.31 0.77

FairAlign

EfficientNet-B3 [2] 0.27 0.96 0.29 0.97 0.35 0.93
RECCE [25] 0.20 0.88 0.42 0.63 0.37 0.67

EfficientNet-B4 [2] 0.24 0.77 0.29 0.87 0.20 0.72
(Ours) MASDT [23] 0.08 0.93 0.22 0.89 0.19 0.65

AltFreezing [24] 0.10 0.94 0.39 0.89 0.25 0.89
Average 0.18 0.90 0.32 0.85 0.27 0.77

scores for skin tone and intersectional group metrics in both datasets.

Comparing the bias metrics for gender with those of skin tone, we notice consider-

ably higher, i.e., more biased, values for skin tone. We believe this due to two main
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Figure 4.2: Distribution of genders and skin tones in the FF++ and CelebDF datasets.

reasons. First, gender is currently defined as a binary class in the dataset, whereas

our definition of skin tones consist of 10 unique classes. This difference between the

number of classes is an important reason behind skin tone showing more bias as

measured by the metrics. The second reason could be that skin tone is inherently more

challenging in terms of bias mitigation, for instance due to the heavily imbalanced

nature of the datasets in this regard. We present the distributions for gender and

measured skin tones in Figure 4.2, where we observe a less balanced, i.e., long-tailed

distribution for skin tones.

Finally, our method demonstrates strong deepfake detection performances across

all four metrics for both datasets. On the FF++ dataset, FairAlign obtains very

competitive results, while on CelebDF, it generally achieves better performances with
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Figure 4.3: Fairness vs AUC plots for all detectors and loss techniques on the FF++
dataset.

respect to others. We visualize all the results in Figure 4.3 and Figure 4.4. A detailed

comparison between both performance aspects (fairness alongside deepfake detection)

from Tables 4.1 through 4.4 and Figures 4.3 and 4.4 highlights that drawing a high-

level conclusion about the best fairness promoting approach remains complicated and

nuanced when considering the deepfake detection results. This is especially the case

on FF++ where the trade-off between fairness and performance seems more complex,



4.2. EXPERIMENTS 49

92 94 96 98
AUC Overall

3

4

5

6

7

8
F
E
O

(G
en

de
r)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

92 94 96 98
AUC Overall

10

15

20

25

30

35

F
E
O

(S
ki

n
To

ne
)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

92 94 96 98
AUC Overall

10

20

30

40

50

60

70

80

F
E
O

(In
te

rs
ec

tio
n)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

(a) FEO Gender (b) FEO Skin Tone (c) FEO Intersection

92 94 96 98
AUC Overall

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
F
P
R

(G
en

de
r)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

92 94 96 98
AUC Overall

6

8

10

12

14

16

18

G
F
P
R

(S
ki

n
To

ne
)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

92 94 96 98
AUC Overall

10

15

20

25

30

G
F
P
R

(In
te

rs
ec

tio
n)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

(d) GFPR Gender (e) GFPR Skin Tone (f) GFPR Intersection

92 94 96 98
AUC Overall

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
P

D
(G

en
de

r)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

92 94 96 98
AUC Overall

0.25

0.30

0.35

0.40

0.45

D
P

D
(S

ki
n

To
ne

)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

92 94 96 98
AUC Overall

0.2

0.3

0.4

0.5

0.6

D
P

D
(In

te
rs

ec
tio

n)

Backbones
EfficientNet-B3
RECCE
EfficientNet-B4
MASDT
AltFreezing

Methods
Baseline
DAG-FDD
DAW-FDD
DRO
MMD
FairAlign

(g) DPD Gender (h) DPD Skin Tone (i) DPD Intersection

Figure 4.4: Fairness vs AUC plots for all detectors and loss techniques on the CelebDF
dataset.

further demonstrating the need for an in-depth trade-off analysis.

Trade-off Analysis. To perform an analysis on fairness-accuracy trade-off, we use

1/FEO following [3] to represent fairness performance for the intersection of gender

and skin tone to capture a holistic view of both sensitive attributes. Moreover,

following [24] we select AUC to represent the the deepfake detection performance of

different methods. Using these metrics, we present Fairea and HM as discussed in
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Table 4.5: Fairness-accuracy trade-off on the FF++ dataset.

Methods
Backbones

Eff.-B3 [2] RECCE [25] Eff.-B4[2] MASDT[23] AltFreezing [24]
Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑

DAG-FDD [3] 0.04 1.64 0.04 1.35 0.05 1.46 0.04 1.68 0.04 1.82
DAW-FDD [3] 0.05 1.55 0.06 1.27 0.05 1.50 0.05 1.55 0.03 1.68
DROχ2 [133] 0.06 1.49 0.06 1.46 0.04 1.48 0.04 1.49 0.05 1.77
MMD [129] 0.05 1.49 0.05 1.50 0.06 1.47 0.04 1.61 0.03 1.82

FairAlign (Ours) 0.07 1.80 0.05 1.64 0.04 1.50 0.05 1.73 0.06 1.91

Table 4.6: Fairness-accuracy trade-off on the CelebDF Dataset.

Methods
Backbones

Eff.-B3 [2] RECCE [25] Eff.-B4[2] MASDT[23] AltFreezing [24]
Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑

DAG-FDD [3] 0.03 1.34 0.02 1.12 0.02 1.26 0.03 1.49 0.03 1.42
DAW-FDD [3] 0.02 1.35 0.03 1.27 0.04 1.20 0.04 1.46 0.03 1.43
DROχ2 [133] 0.02 1.34 0.02 1.20 0.02 1.27 0.03 1.39 0.03 1.57
MMD [129] 0.03 1.31 0.03 1.17 0.03 1.36 0.03 1.51 0.03 1.62

FairAlign (Ours) 0.04 1.30 0.04 1.24 0.03 1.40 0.04 1.58 0.04 1.70

Section 4.1.4, and present the results in Tables 4.5 and 4.6 for FF++ and CelebDF

respectively. We observe that FairAlign generally outperforms other bias-mitigation

methods across different backbones when considering both fairness and accuracy. For

instance, FairAlign achieves the highest scores on FF++ for EfficientNet-B3 and

AltFreezing according to Fairea and HM respectively. On the CelebDF dataset, the

best results are obtained by our method using all four backbones as per Fairea, while

HM indicates the highest score using AltFreezing. An important observation from

this analysis is that while theoretically both metrics (Fairea and HM) are capable of

quantifying the fairness-accuracy trade-off, Fairea seems to produce less discriminatory

outcomes. In contrast, HM generates a wider range of values, offering a more effective

and discriminative means of capturing the trade-off.
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Figure 4.5: Effect of tuning the λ hyperparameter on bias metrics for AltFreezing
backbone trained on CelebDF dataset.

Impact of λ on Fairness. We further investigate the impact of the λ hyperparameter

in Equation 4.9 on the bias metrics. Figure 4.5 illustrates the relationship between the

bias metrics and various values of λ using the AltFreezing backbone on the CelebDF

dataset. From this figure, we observe that for six out of the eight plots, λ = 1 results

in the least amount of bias, while for FEO for Intersection and GFPR for Skin Tone,

λ = 0.25 and λ = 0.75 are marginally better than 1. For consistency, we set λ = 1

throughout all the experiments in this work.

Computational Cost. Additionally, we assess the computational efficiency of our
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Table 4.7: Average time per epoch for bias mitigating methods on CelebDF across
multiple backbones on a single NVIDIA A100 GPU.

Methods Time per epoch (s)
DAG-FDD [3] 109.71
DAW-FDD [3] 220.84
DROχ2 [133] 187.32
MMD [129] 141.60
FairAlign (Ours) 167.65

method by comparing the average time per epoch for all involved bias-mitigating

methods on the CelebDF dataset. We present the results in Table 4.7 where we

observe that although FairAlign does not demonstrate the lowest time, it is able to

achieve substantial performance gains with a reasonable computational overhead.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we addressed two key problems in the realm of deepfake detection. The

first problem centers on the considering temporal information in for detecting deepfake

videos. The second problem is concerning bias in deepfake detection to improve

fairness for gender and skin tone, especially without compromising deepfake detection

accuracy. To address the first problem, we proposed an effective solution based on

a masked autoencoding transformer architecture. To tackle the second problem, we

proposed a plug-and-play loss term to promote fairness in deepfake detection across

gender and skin tone groups, while considering fairness-accuracy trade-off. Following

is a summary of our work in this thesis.

In Chapter 3, we introduced MASDT, a learning framework for enhanced deepfake

detection. Our method consists of two components, spatial and temporal consistency

learning. The model follows a sequential two-step process. Initially, it employs

self-supervised pre-training where both spatial learning and temporal consistency

learning components engage in data reconstruction. Spatial learning makes use of



5.1. CONCLUSION 54

a masked self-supervised auto-encoder to derive robust spatial features from partial

facial images, while temporal consistency learning employs a similar auto-encoder

to extract temporal features from partial optical flow fields. Subsequently, deepfake

detection is executed through fine-tuning of the encoders of both learning components

followed by simple score-level fusion. Various experiments on FF++ (LQ and HQ)

and CelebDF datasets demonstrate that our approach outperforms state-of-the-art

methods by effectively learning spatial and temporal information, resulting in enhanced

classification performance.

In Chapter 4, we proposed FairAlign, a novel loss term designed to promote

fairness in deepfake detection. Our method operates by aligning conditional embedding

distributions within the higher-dimensional kernel space, thus reducing information

related to sensitive attributes that could potentially bias the detection process. In

addition to standard practice of bias reduction for gender, we implemented a simple

yet effective pipeline to annotate and reduce bias in deepfake detection for the sensitive

attribute of skin tone. Lastly, we performed a study on the fairness-accuracy trade-

off in deepfake detection for the first time. Through various experiments on two

commonly used public datasets, we demonstrated that FairAlign outperforms other

bias-mitigation techniques while integrating smoothly with various deepfake detectors

to improve fairness. The experiments demonstrated that not only FairAlign is highly

effective in reducing gender and skin tone bias, but it does so while retaining strong

deepfake detection performance.
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5.2 Future Work

We identify several areas for potential future work. In the context of our work

in Chapter 3, while the integration of temporal information through optical flow

improves the detection performance of our method, it also increases the computational

complexity of the system, potentially limiting its real-time applicability. Second,

the proposed approach may not be robust to novel deepfake techniques or attacks

targeting the identified limitations. Therefore, the effectiveness and generalizability of

our proposed method will need to be validated further on new datasets and deepfake

scenarios as they become available in the future. Third, we observe that the temporal

consistency contributed mostly to the reduction of false positive detection. While this

can indeed be valuable for practical applications, designing additional components to

further enhance the true positive detection is also of critical importance. Additional

future research directions in this area may include a lightweight version of MASDT for

real-time or edge deployment, which could be achieved through distillation. Moreover,

by integrating various modalities such as visual, audio, and text data and leveraging

the strengths and complementary aspects of each modality, a unified framework could

significantly enhance detection capabilities and overall performance through a holistic

understanding of manipulated content. Lastly, extending our framework to accurately

detect deepfakes beyond only faces, for example to full body video clips, natural

sceneries, and others, can be an interesting future research direction.

Regarding our work in Chapter 4, as seen from the results, FairAlign has the

potential for speed improvements. We believe the calculation of the matrix inversions

in Equations 4.3 and 4.4 can be sped up using estimation strategies, resulting in an

overall faster FairAlign. Moreover, while FairAlign is designed for deepfake detection,
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its applicability and efficacy in other domains that involve sensitive attributes, such as

facial expression recognition or affect analysis, remain uncertain. Each domain could

introduce distinct challenges that may impact FairAlign’s performance. Lastly, our

study on skin tone bias reduction relies on the detection and quantification of skin

tones. While we resorted to standard and widely accepted off-the-shelf modules for our

skin tone detection pipeline, custom-designing this component with fairness-promoting

procedures embedded into it could be a promising and interesting future research

avenue. Additional future directions may involve exploring the robustness of FairAlign

against varied and potentially adversarial inputs warrants further investigation. More-

over, the notion of robustness, especially its trade-off with respect to fairness [134]

can be studied. Investigating the intertwined relationship of fairness and robustness

in the context of deepfake detection remains an open question in the field.
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